BARGAINING CREDIBILITY AND THE LIMITS TO WITHIN-FIRM PENSIONS

by

Jan Erik ASKILDSEN*

Department of Economics, University of Bergen, Norway

and

Norman J. IRELAND

Department of Economics, University of Warwick, England

Received October 2002; final version accepted May 2003

ABSTRACT**: A simple bargaining model highlights the role of commitment to a low-risk investment policy for firms which offer within-house pension and health insurance schemes. The roles of this commitment level plus bargaining power, and the ability of a failing firm to misappropriate pensions funds, are studied and their influence on the equilibrium pension determined.

1 Introduction

It is common for firms to offer their workers future benefits in terms of a pension or health insurance, hereafter termed pensions. A pension fund may be considered similar to an upward sloping wage profile, so that a firm-based pension plan is an instrument for deferred payment. Generally deferred payment may take many forms, from bonding and employment fees to funded pension arrangements. The former is often considered empirically less relevant, whereas pensions as part of a work contract are commonplace at least in larger firms. Previously, defined benefit plans, often as unfunded

* Corresponding author: jan.askildsen@econ.uib.no
** Résumé en fin d’article; Zusammenfassung am Ende des Artikels; resumen al fin del artículo.
within firm plans, were standard, but recent years have seen a shift towards externally financed defined contribution arrangements. However, several work related pensions share the important feature that their expected benefits will depend on the success or failure of the firms’ business strategy and risk taking. This is particularly relevant for defined benefit schemes. For externally funded defined contribution plans, a similar risk may exist when investments are made in own stock. In unionised industries this will be of concern to unions.

Both employers and workers will find deferred payments and pensions advantageous, Lazear (1979). Increasing wage profiles, and future payments through pensions, may help the firm protect firm specific investments in human capital by avoiding inefficient separations that raise the value of the investments. This is discussed in general terms by Becker (1975) and Hashimoto (1981), and with specific reference to pensions in Johnson (1996). Johnson finds empirical support for the hypothesis that the likely existence, as well as generosity of pension plans, is higher in firms that undertake specific human capital investments. Pensions may also be used to increase productivity through sorting of workers, Ippolito (1997), and the performance of workers by increasing effort or reducing shirking: see Dorsey et al. (1998) for an overview of studies which test hypotheses of productivity gains of pensions. Akerlof and Katz (1989) and Curme and Kahn (1990) use an efficiency wage approach to explain how deferred payments may be a disciplining device to reduce shirking. The upward sloping wage profile given by arrangements like workers’ trust funds and pensions will make it costlier for a worker to shirk, since rights in future benefits will be denied. Furthermore, it can be argued that compared to paying an efficiency wage to motivate workers’ efforts to keep their jobs, pensions have the advantage for firms of being paid at the end of a worker’s career, and with wages related to productivity as is usually assumed, often more is paid to the worker who has shown high effort. The latter would be particularly true for pensions which are linked to salaries. For the workers, compared to individual savings for pension, benefits from within-firm pension funds may include economies of transaction costs, reduced agency costs, or less adverse selection problems. This will contribute to making a within-firm pension less expensive than the individually signed contract, and with some bargaining power, the workers may be able to capture part of this gain.

However, a general problem with all deferred payment is that it may never materialise and currently many pension schemes are in difficulties. The firms may default fully or partly on its pension plans. Bankruptcy in larger firms with defined benefit plans have often
involved severe losses for pensioners, see Orr (1998). This most commonly takes place during downsizing or hostile takeovers, and in declining industries. There are several ways in which firms can avoid all or parts of their pension liabilities. In previous periods of pension surplus, firms were able to reduce their contributions to the fund. With stock market falls the surplus has turned to deficit, and an increase in firm contributions is usually at the firm’s discretion. The firm can then argue to reduce benefits by, for example, moving from a defined benefit scheme to a defined contribution scheme. A firm can also avoid its liabilities through direct bankruptcy or though strategic bankruptcy. The latter strategy involves shifting of assets to subsidiaries, which effectively will reduce the bargaining position of the workers who were supposed to receive pensions. Even the transfer of liabilities to insurance companies may not be sufficient to avoid this risk: Insurance companies may also arrive at a position where liabilities should be reduced. Thus, Orr argues that current public regulations for protecting pension schemes, like the US ERISA, are not sufficient for avoiding default on pension liabilities. This will be important for the establishment and magnitude of pension plans. Curme and Kahn (1990) show that, theoretically and supported by empirical evidence, the likelihood of a pension plan to exist is decreasing in the probability of firm failure. A main reason for this in their setting is that the riskiness affects the value of future benefits, and thereby may reduce the value of the pension fund as a disciplining device.

A parallel and related risk is that the firm may at some time assess some workers as unworthy of employment or promotion. This is typical what happens during downsizing. Let us assume that a change in technology has resulted in a mismatch of skill. Then a worker may become employed in a factory with low productivity or with a team of workers with low productivity, even though he or she would be highly productive as an individual in another setting. To avoid seniority rules and employment protection laws, the firm may choose to close fully or partly the factory, or as is also common, move all its production to a low cost country, without attempting to differentiate among the workforce. As part of the process the workers involved are offered a termination package, which only partly honours the pension rights. Of course, not all pension rights would be lost in these situations. Even if the firm went bankrupt, workers might not lose their earned pension rights. However, they will still lose in the sense that pensions are often based on their highest wages, and highest wages commonly come towards the later periods of employment, see Ippolito (1986).

It is recognised that unions may bargain over a pension fund as part of a general wage agreement, Freeman and Medoff (1984), and
that pension arrangements are more frequently observed in unionised firms, Freeman (1985) and Curme and Kahn (1990). A reason for this may be that pensions represent a possibility for unions to extract rents from the firm, Montgomery and Shaw (1997). The bargained pension compensations will differ according to the parties’ bargaining strength, and according to the unions’ objectives and internal power structure. For example, unions emphasising seniority and preferences of older workers, may put a large weight on deferred payment, Freeman (1985) and Stewart (1997). The frequencies of turnover within the workforce may likewise be important for how unions will value deferred payment through pensions, Askildsen and Ireland (2003), depending on the unions’ internal power structure.

In this paper, we argue that the value of a pension scheme to a union and its workers depends on the credibility of the bargaining process. Workers will know that the firm may default on its promises to pay a pension in a variety of ways, and the bankruptcy probability itself may be affected by the firm’s investment policy. For example, a move into a risky venture may lead to the overall failure and break-up of a company with some workers being made redundant and others continuing in employment but under a poorer benefits regime. Furthermore, although the workers may know the risk profile of the firm as it is with today’s management, the future may bring changes. The firm may be taken over by other owners and managers with a different risk profile, potentially threatening the value of the pension plan.

How the pension outcome from the bargain will reflect both the possibility of bankruptcy, or company failure more generally, and the extent of any resulting misappropriation of pension funds, is our main focus. However, the model and analysis can similarly relate to risk for an individual worker. If the firm-worker relationship becomes poorly matched, implying a disadvantage if the worker remains with the firm then some benefits would be lost due to the very nature of pension schemes which are designed to reward long service. Our model will be couched in the terms of the dangers from firm failure, but an interpretation of the model as a matching failure would be equally valid. The model is described in the next section, and the mathematical analysis is in section 3. A final section considers the implications of the analysis.

2 The model

Our model is simplified by assuming that the number of workers in the firm is fixed by technology, at N. We ignore most specific
characteristics of the firm’s product and factor markets, but we summarise the firm by its strategic policies and caution. The outcomes of these policies are to affect the chance that the firm ‘succeeds’ or ‘fails’ in delivering its pension commitments. Suppose a firm which ‘succeeds’ will be a good vehicle for its N workers’ pension plans, such that the return g to within-firm contracted savings is higher than the return b to outside (independent) savings plans. We assume that the return g is high enough to make the workers prefer within-firm insurance to any outside option involving individual savings. The latter would be the alternative were the workers paid the implicit insurance premium or pension contribution up-front as a part of the wage and could invest it as they wish.

From the worker’s point of view, a wage contract will secure the workers at least their reservation utility, and a negotiated or bargained pension even though this may involve uncertainty in terms of reliability or actual coverage. If the within-firm pension pays out as promised with return g, it will be assumed that no further transfers into the future are desired. However, a firm may fail and then deliver less than the anticipated return, and indeed the firm may appropriate savings within the firm, gaining a proportion $(1 - \gamma)$ for the firm’s owners and returning a proportion γ to the worker. In the introduction we discussed several ways in which this may take place. In this case we assume that the pension yields a return γb to each worker, after reinvesting the unappropriated share γ in an independent scheme with return b. The worker then needs to save more while working (or delay retiring) in order to make good the shortfall.

The probability of the firm being a ‘success’ in delivering the pension can be improved by avoiding high-expected-profit ventures that are however very risky. In terms of job security of workers with particular skills, success can be made more likely by avoiding shifts in product focus or technology. A reduced risk also comes about if more strict rules are placed on the management of the pension fund, which in effect restricts the firm’s potential for appropriating funds through different strategic procedures as discussed in the introduction. In all cases expected profits are lost by the firm in order to improve the likelihood of successful pensions implementation. The expected profit lost to achieve a probability of success of p is assumed to be $v(p)$, with $v'(p) > 0$ and $v''(p) > 0$. Thus there are increasing opportunity costs of improving the chance of success. A small improvement can be made by discarding the most risky policy options, but large improvements mean adopting extremely conservative policies which heavily restrict profits.
The risk-status of the firm may be bargained over at the initial pension-setting bargaining process. However, there is a limit to commitment. There is a probability \(\mu \) that the manager or firm may be replaced or bought-out by another manager or firm not committed to this risk process. Then a revised \(p \) is selected, called \(\hat{p} \). Alternatively, the initial manager may be thought trustworthy with probability \(\frac{1}{\mu} \). In either case the worker and the worker’s bargaining representative is faced with the firm being tempted in the future to change the risk to the worker. If \(\mu = 0 \) then there is no commitment problem and the Pareto efficient bargain is an efficient bargain over wages, \((w) \), within-firm savings, \((s) \), and risk status \((p) \). If \(\mu = 1 \) then no commitment over \(p \) is possible, and we have the equivalent of a ‘right-to-manage’ (RTM) model with \(w \) and \(s \) being bargained over and committed, while \(p \) is left to the firm management to decide. The firm will choose \(\hat{p} \). An intermediate situation is represented by \(0 < \mu < 1 \) where \(w, s, p \) are bargained over initially but \(p \) may change to \(\hat{p} \) with probability \(\mu \). In this situation the worker will have to attach an additional risk premium over any contracted \(p \). Note that enforcement of the \(p \) element of any contract will be intrinsically difficult since the only verifiable event may well be the firm’s failure. Not only would attempts to obtain redress then be subject to the defence that the firm was just unlucky, but also the firm may not have resources to claim.

The firm’s expected profit will be written in a simple form. Since the number of workers is fixed at \(N \), we will normalise \(N \) to be 1 (eg 1 thousand workers). There are four states of the world: ‘success’ and ‘failure’ (probabilities \(p \) and \(1 - p \)), combined with commitment or non-commitment to contracted \(p \) (probabilities \(1 - \mu, \mu \)). Success implies additional revenue to the firm of \(R \), relative to the ‘failure’ level of \(R_0 \). Thus expected profit is

\[
E\pi = (1 - \mu)\{[R_0 + Rp - w - ps - (1 - p)\gamma s] - v(p)\} \\
+ \mu\{[R_0 + \hat{R}p - w - \hat{p}s - (1 - \hat{p})\gamma s] - v(\hat{p})\}
\]

The interpretation is as follows. There is a probability \((1 - \mu) \) that the firm will be or feel bound by the bargained value of \(p \) as well as those of \(s \) and \(w \). Then the firm’s profit is \((R_0 + R - w - s) - v(p) \) if it is successful and \((R_0 - w - \gamma s) - v(p) \) if it is not. The extra revenue on top of \(R_0 \) from being successful is \(R \) but a claim of \((1 - \gamma)s \) is obtained from pension funds if the firm fails. The bigger the probability of success \(p \), the lower the expected profit (whether successful or not) due to the avoidance of risky but highly profitable ventures \((v(p)) \). On the
other hand, with probability μ the firm is relieved of its commitment about risk, and can replace p by \tilde{p} which maximises (1) and hence solves

$$R - s(1 - \gamma) = \nu'(\tilde{p})$$

so that the net gain from being more likely to be successful is offset by the opportunity cost of forgoing more cautious strategies. Also, we note from (2) that

$$\frac{d\tilde{p}}{ds} = \frac{-1}{\nu''(\tilde{p})}(1 - \gamma) < 0 \quad \text{and} \quad \frac{d\tilde{p}}{d\omega} = \frac{d\tilde{p}}{dp} = 0$$

so that more saving increases the moral hazard of pursuing risky projects, while the wage and the negotiated risk level do not. Note that this effect is different from the efficiency wage behaviour depicted in Curme and Kahn (1990), since we have here a rent sharing game between workers and firm owners.

Now consider workers’ utilities. We assume quasi-linear utilities and two periods such that ex post

$$U = c_1 + u(c_2)$$

where c_1, c_2 are expenditures in the work period and as pensioners, respectively. $u(c_2)$ is assumed to be strictly concave with $u'(0) > 0$. Essentially the concavity is meant to reflect the argument that, as pensioners, there is a large loss from having too little income, while there is only a small gain from having an income higher than ‘required’. This in turn reflects the argument that consumption opportunities for pensioners are more limited but some elements of consumption are essential. We assume that information about the success or failure of the firm is obtained in time for c_2 to be raised to the optimal level given independent saving. Hence if γbs is to be expected from saving s within a firm scheme when the firm ‘fails’, then a further saving of $x = \frac{\hat{c}_2 - \gamma bs}{b}$ will provide a pensioner income of \hat{c}_2 which solves $u'(\hat{c}_2) = \frac{1}{b} \nu''(\hat{c}_2)$ (i.e. x maximises $-x + u(\gamma bs + bx)$), and \hat{c}_2 maximises $\frac{-\hat{c}_2 + \gamma bs}{b} + u(\hat{c}_2)$. Ex ante the expected utility of a worker, EU, in the firm net of an alternative $\tilde{U} = 0$ is

$$EU = (1 - \mu)[w + pu(sg) + (1 - p)(u(\hat{c}_2) - \frac{\hat{c}_2 - \gamma bs}{b})]$$

$$+ \mu[w + \hat{p}u(sg) + (1 - \hat{p})|u(\hat{c}_2) - (\frac{\hat{c}_2 - \gamma bs}{b})|]$$

© CIRIEC 2003
Finally, the bargaining function is defined as
\[
\psi = (E \pi)^\alpha (EU)^{1-\alpha}
\]
(5)

where \(\alpha \) is the relative bargaining power of the firm vis-à-vis the union, and the no-agreement threat points are assumed zero for both parties. We will limit ourselves to the axiomatic analysis of the bargaining function, rather than the ‘insider option’ approach of Binmore et al (1986). The latter would require an intricate explanation of the relationship between wage and pension in terms of discount rates, and the bargaining power parameter in terms of relative discount rates. These complications will be addressed in future research.

3 Analysis

We will confirm the following intuitive conjectures as results from our analysis:

(i) **Independence of bargaining power**: \(p, \hat{p} \) and \(s \) may be solved independently of bargaining power between firm and union (workers) since \(w \) can absorb the effects of power distribution.

(ii) **Workers are more cautious**: \(p > \hat{p} \) since workers lose out if the firm fails and hence their interest is to bargain for more security.

(iii) **Pensions need commitment**: \(p \) and \(s \) decrease with \(\mu \), and \(\hat{p} \) increases with \(\mu \). Thus pensions will deliver better the more reliable the firm’s long run commitment.

(iv) **Equivalence conditions**: Efficient bargaining and RTM models (\(\mu = 0,1 \) respectively) are the same only if \(\gamma = 1 \) (no appropriation of savings by a failing firm) and \(g = b \) (no superiority of within-firm savings). The same savings level results whatever the value of \(\mu \) if \(\gamma = 1 \), but \(p \neq \hat{p} \) unless \(g = b \).

These conjectures are important since they would seem to be sensible properties of most models of pension allocation. Thus the notion that bargaining power has an effect on wages but does not affect long-term benefit provision accords with the observation that wages are the primary focus of bargaining, while pensions remain a long-term arrangement. Wages will reflect what the workers can gain given their bargaining position, while the way the total gain is shared among short term payment and long term benefits is a matter of
preference, see also Lazear (1979). The problem is, of course, that features of the bargaining system may imply different protection for the two ways of delivering utility.

Our results are interpreted on the basis of the first order conditions for a maximum, to be derived below. Taking logs of (5) and maximising with respect to \(w, s \) and \(p \) yields

\[
w : \quad -\frac{\alpha}{E^{-\pi}} + \frac{(1 - \alpha)}{EU} = 0 \tag{6}
\]

\[
s : \quad -\frac{\alpha}{E^{-\pi}} \{ (1 - \mu)(p + (1 - p)\gamma) + \mu(\bar{p} + (1 - \bar{p})\gamma) \} \\
+ \frac{1 - \alpha}{EU} \{ (1 - \mu)[pu'(sg)g + \gamma(1 - p)] + \mu[\bar{p}u'(sg)g] \\
+ \gamma(1 - \bar{p})] + \mu[u(sg) - u(\hat{c}_2) + \frac{\hat{c}_2 - \gamma bs}{b}][\frac{-1}{v''(1 - \gamma)}] \} = 0 \tag{7}
\]

\[
p : \quad \frac{1 - \alpha}{E^{-\pi}} \{ R - s(1 - \gamma) - v'(p) \}(1 - \mu) \\
+ \frac{1 - \alpha}{EU} \{ (1 - \mu)(u(sg) - u(\hat{c}_2) + \frac{\hat{c}_2 - \gamma bs}{b}) \} = 0 \tag{8}
\]

while we recall that \(\bar{p} \) is defined by (2).

Equation (6) simply allocates utility between the firm and the union’s members by virtue of setting the wage \(w \) and in accordance with the bargaining power parameter \(\alpha \). Note that \(\hat{c}_2 \) is independent of \(w, s, p \) and \(\bar{p} \) since it comes from the rigid requirements for retirement consumption if the marginal savings return from first period savings is \(b \). There is no income effect on \(\hat{c}_2 \). Equations (7) and (8) jointly determine \(s \) and \(p \). Also, \(\bar{p} \) is determined by (2) given \(s \), and \(p \) is determined by (8) given \(s \). Equation (7) is formed by including the effect of changing \(s \) on \(\bar{p} \). No such loop exists in (6) or (8) since \(\bar{p} \) is a function of neither \(w \) nor \(p \). We can use (6) in (7) and (8) and divide through to remove both terms outside the curly brackets. Simplifying then yields the revised forms for these conditions which become easier to interpret:

\[
s : \quad (p(1 - \mu) + \bar{p}u)(-1 + u'(sg)g) - \mu \frac{1}{v''(\bar{p})}(1 - \gamma)H(s) = 0 \tag{7'}
\]

\[
p : \quad R - s(1 - \gamma) - v'(p) + H(s) = 0 \tag{8'}
\]

(7’) can be seen as the expected value of the risk probability times the marginal utility of ‘good’ (return \(g \) savings minus \(\mu \) (the probability
that the firm does not commit) times the marginal effect of s on \hat{p} times $H(s)$. The term,

$$H(s) = u(\sigma g) - u(\hat{c}_2) + \frac{\hat{c}_2 - \gamma bs}{b},$$

can be interpreted as the difference in worker utility achieved if the firm succeeds rather than fails. Thus changing s has an effect via the return on successful savings through the firm but at a cost of increasing the moral hazard for the firm of losing the worker H if the firm fails. $(8')$ relates to the social gain from higher p: a gain of $R - s(1 - \gamma) - v'(p)$ to the firm and H to the workers.

Equations $(7')$, $(8')$ and (2) which determine s, p, and \hat{p} are independent of bargaining power α. This is Result (i). We note that $H(s) > 0$ if firm failure is bad for workers as assumed, and then $p(s) > \hat{p}(s)$ by comparing (2) and $(8')$ and using the fact that $v''(p) > 0$. This is Result (ii).

Now, from $(8')$, p is a function of s alone. Hence write $p(s)$ from $(8')$ and $\hat{p}(s)$ from (2) and insert into $(7')$:

$$(p(s)(1 - \mu) + \hat{p}(s)\mu)(-1 + u'(sg)g) - \frac{\mu}{v''(p(s))}(1 - \gamma)H(s) = 0 \quad (7'')$$

Now, second-order conditions for a maximum imply that the left hand side of $(7'')$ is decreasing in s at a solution to $(7')$, say s^*. Hence,

$$\frac{ds^*}{d\mu} = \frac{1}{D} \left\{ (p(s) - \hat{p}(s))(-1 + u'(sg)g) + \frac{1}{v''(p)}(1 - \gamma)H(s) \right\} \quad (9)$$

and $D < 0$ from second order conditions (D is the derivative of $(7')$ with respect to s). As $D < 0$, and $-1 + u'(sg)g > 0$ from $(7')$, we have $\frac{ds^*}{d\mu} < 0$. Now from (2), $\frac{dp}{d\mu} = \frac{dp}{ds^*} \frac{ds^*}{d\mu} > 0$ (the more that workers save within the firm, the more risk the firm takes since it can appropriate some fraction of savings if it fails), and from $(8')$, $\frac{dp}{d\mu} = \frac{dp}{ds^*} \frac{ds^*}{d\mu}$. The latter is

$$\frac{dp}{d\mu} = \frac{ds^*}{d\mu} \left[\frac{1}{v''(-1 + u'(sg)g - \gamma)} \right] = \frac{ds^*}{d\mu} \left[\frac{1}{v''(-1 + u'(sg)g)} \right] < 0 \quad (10)$$

This completes Result (iii): p and s decrease with μ, and \hat{p} increases with μ. Less commitment (μ larger) restricts the extent and reliability of the pension scheme while increasing the profit-maximising risk to adopt.
Finally to obtain Result (iv), consider what is necessary for a change in μ to affect the solution. First suppose $\gamma = 1$ so that there is no misappropriation from workers’ pension funds to a failing firm, while $g > b$. Then s^* solves $u'(sg)g = 1$ from (7’) and $\frac{ds^*}{d\mu} = 0$, so that neither p nor \hat{p} are affected by a change in μ ((8’) and (2) do not include μ directly). Also, changing μ does not change s^*. Although $p > \hat{p}$ here, a reduction in commitment to p does not affect either p or s^*. Second, suppose that $g = b$ and $\gamma = 1$. Then $H(s) = 0$ and $p = \hat{p}$ while again s^* is unchanging at its efficient level with $\gamma = 1$. In this case, the firm’s commitment to the bargain is immaterial and the RTM and Efficient Bargaining solution are equivalent.

4 Conclusion

The key issues in ensuring appropriate use of within-firm pension and health insurance funds are first to prevent workers losing pension benefits, relative to independent pension funds, if the firm should fail, and secondly to safeguard workers’ interests in avoiding risk to their pension and insurance funds. The first issue requires that failing firms cannot benefit from their pension funds ($\gamma = 1$). This is a matter for regulation but of relevance primarily for defined benefit within-firm plans. With such schemes, the firm can claim that any perceived surpluses can be returned to the firm, without an obvious requirement to make up perceived deficits in the event of a reduction in the value of fund assets. The second issue will always exist if $g > b$ and $\mu > 0$ since the firm which reneges on risk-avoidance will not take due care of workers’ interests. This second feature is more difficult to legislate against than the first, simply because the value of p is a probability and not easily contracted nor enforceable in a court of law. Firm failure is always possible, and so the defence of ‘bad luck’ is difficult to challenge and redress from a bankrupt firm is unlikely to be feasible.

This paper has considered the bargaining over wages as extended to long term benefits. It has focussed on the union-firm bargain. However, many of the issues we have discussed would have equal relevance for an individual worker who would lose pension fund value by changing employers, and also for pension placed with external insurance companies. Promises of future prospects on hiring may be endangered by the firm’s shifts of focus and requirements for particular skills. Then the worker has to determine whether to
improve wage prospects in the remainder of the work period and to accept the diminution of pension funds or to stay with a firm which will not pay her market worth. Then the very nature of long-term benefits which seem to be so attractive for firms in binding workers to them are seen as the root of heavy risks to employees. Again it is the risk of such events that will limit the worker’s willingness to bargain wages for pensions with the firm.

REFERENCES

©CIRIEC 2003

Crédibilité dans la négociation et limites des fonds de pensions internes à l’entreprise

Un modèle simple de négociation met en évidence l’effet d’imposer une politique d’investissement à faible risque à des entreprises offrant des fonds internes de pensions et d’assurance-santé. L’effet de cette contrainte et du pouvoir de négociation ainsi que la capacité d’une entreprise en faillite de détourner les fonds de pensions sont étudiés ainsi que leur influence sur la pension d’équilibre.

Glaubwürdigkeit bei Verhandlungen und die Grenzen von betrieblichen Pensionen

Ein einfaches Verhandlungsmodell wirft ein Schlaglicht auf die Rolle der Bindung an eine risikoarme Investmentpolitik bei Firmen, die betriebsinterne Pensions- und Altersversorgungsmodelle anbieten. Die Rolle der Stärke dieser Bindung plus der Verhandlungsmacht und die Möglichkeit einer in Konkurs geratenden Firma, Pensionsfonds zu veruntreuen, werden untersucht, und es wird deren Einfluss auf die “Gleichgewichts-Pension” bestimmt.

©CIRIEC 2003
Credibilidad en la negociación y límites de los fondos de pensiones internos en la empresa

Un modelo simple de negociación pone en evidencia el efecto de imponer una política de inversión de escaso riesgo en las empresas, ofreciendo fondos internos de pensiones y seguros sanitarios. El artículo estudia el efecto de esta imposición y del poder de negociación, así como la capacidad de una empresa en quiebra para devolver los fondos de pensiones, asimismo se analiza su influencia sobre la pensión de equilibrio.