
A Crowning Moment for Wiener Indices

By Bo-Yin Yang and Yeong-Nan Yeh

The Wiener (Sum of All Distances) Index for three out of the four classes of
hexagonal models or regular planar hex-patterns used to model graphite and
similar structures have been known for a few years. In this paper we find the
Wiener Index for the Crown or Beehive hexagonal model.

1. Wiener indices and chemical graphs

Chemists have worked extensively with graphs. To an organic chemist, the
graph of a compound is a natural concept—take the (non-hydrogen) atoms as
vertices and bonds as edges.

The Wiener vertex is a function defined on connected graphs. Often such a
function, or “topological index” would have a good correlation with some
measurable property of a chemical.

For a connected graph G = (V , E), let dG(u, v) denote the shortest distance
between the vertices u and v on the graph, then sum over all pairs of vertices
{u, v} ∈ (V

2

)
to get W(G) ≡ ∑

{u,v} �G(u, v). We also write W(u | G) ≡∑
v∈G �G(u, v), so W(G) = 1

2

∑
u W(u | G).

There are many interesting applications for Wiener indices in physical
chemistry and other branches of science. A discussion of these and their
general usefulness in chemistry can be found in many chemical treatises such
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as [1, 10, 14]; general chemical interest can be found in the other references.
One specific usage is found in modeling some behaviors of carbon (in the
allotrope of graphite).

The authors have been involved with most of the previously known results
about the Wiener Indices of graphs involving hexagons [5, 6, 16, 17]. Most of
the work has started here:

LEMMA 1 (Shelling Lemma for Wiener Indices). Let G = (V , E) be a
connected graph, and partition its vertex set V into V 0 	 V 1 	 V 2 	 · · · 	 V k

in such a way that the restriction of dG ≡ d to G j ≡ G|Vj is the same as dG j

(hence, each V j is connected), then we have

W(G) = W(G0) +
K∑

j=1

[∑
u∈Vj

W(u |G j ) − W(G j )

]
, (1)

In fact, straightforward approaches work for cases (a), (b), and (d)—see [5]
for details, but not for the kind of graph as depicted in (c). We present a
solution to this problem.

2. A formula for Wiener indices of crowns

The hexagon “crown” or beehive model (see Fig. 1(c)) differs from the other
three “hexagonal models,” as discussed in [5] in that one cannot modify, as in
the Crown into a graph that has a Wiener Index that is easy to compute, and the
“shelling” lemma (Equation (1)) used for the polygonal chains doesn’t work,
because the natural order of things would be to divide the graph into concentric
tracks, and the distance in the Crown is not preserved by this subdivision.

THEOREM 1 (Wiener Index of Crowns).

W(Z j , Zk | Crn) = (2m − 1)[18(8k2 − 8k + 3) + 40 j( j − 1)]

W(Crn) =
n∑

k=1

{
k−1∑
j=1

W(Z j , Zk | Crn) + 1

2
W(Zk, Zk | Crn)

}

= 1

5
(164n5 − 30n3 + n). (2)

While the shelling lemma does not apply, we still divide the graph into the
concentric hexagon tracks (the center hex will be Z1 and the next track out Z2,
and so on). It is easy to see that (see Figure 2) the distances from antipodal
pair of vertices in Zk to one of the center vertices always add up to 4k − 1 for
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Figure 1. The four classes of hexagonal carpets. (a) Parallelogram model, (b) rectangular
model, (c) crown model, and (d) square model.

the “outer” part of Zk and 4k − 3 for the “inner” part. So W(Z1, Zk | Crn) ≡∑
u∈Z1,v∈Zk

d(u, v) is equal to

6 × 3 × [k(4k − 1) + (k − 1)(4k − 3)]

or W(Z1, Zk | Crn) = 18(8n2 − 8n + 3).
To find W(Z j , Zk | Crn), the sum of distances from Zj to Zk , we need a

little trick (see Figure 3).
Let u (a center vertex) and v (an “inner” vertex of Z2) be as marked and take

another vertex x ∈ Crn . What is the difference d(v, x) − d(u, x)? Obviously, x
is one further away from u than from v if x lies on v’s side of the thick black
line shown (marked “+”), and vice versa (marked “−”). So d(v, x) − d(u, x)
summed over any set S of vertices is the difference between the number of
vertices in S on the right side of the thick line and those on the left. For the
track Z5 (marked in shade), we see that this difference is 8.

Indeed, because the parallel lines in Figure 3 are symmetric to each other
with respect to the center of the graph, and there will always be 8 vertices,
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Figure 2. Distances between a center vertex to the rest of Cr6 (the tracks Z 1, Z 2, Z 4, and Z 6

are shown).

4 on each side, on any track Zk that lie between those two lines, we see that for
any k, ∑

x∈Zk

(d(v, x) − d(u, x)) = 8.

A similar comparison yields the difference between the sum of distances to an
outer track from two adjacent vertices, for example, for the vertex w (in the
“outer” half of Z2) in Figure 3, we have∑

x∈Zk

(d(w, x) − d(u, x)) = 8 +
∑
x∈Zk

(d(w, x) − d(v, x)) = 16.

We exhibit W(v, Zk | Crn) − W(u, Zk | Crn) for various v in Figure 5. From
this, we also have

W(Z2, Zk | Crn) = 3 × W(Z1, Zk | Crn) + 6 × 8 + 12 × 16

= 432k2 − 432k + 402.
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Figure 3. The difference in sum of distances.

It is by now clear that W(Z j , Zk | Crn) = (2 j − 1)W(Z1, Zk | Crn) + p j , where
pj is a constant for k > j . All that remains is to find pj and we shall have

W(Crn) =
∑

1≤ j<k≤n

W(Z j , Zk | Crn) + 1

2

n∑
j=1

W(Z j , Z j | Crn).

From the numbers in Figure 4, we can now compute

p2 = 6 × (8 + 2 × 16)

= 240

p3 = 1,200

p4 = 3,360

p5 = 7,200

p6 = 8,800

...
...

...
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Figure 4. Differences in the sum of distances from a vertex to any outer track as we slide it
around.

and inductively

p j = 40m(m − 1)(2m − 1) (3)

Now all we need is to prove Equation (3). Let the sum of numbers in the
inner part of the j-th row be qj and that of the outer part r j. A look at Figure 4
tells us that r1 = 8 and each number in the “inner j-th row” is greater than the
corresponding one in the previous “outer row” by 8( j − 1), so

q j = r j−1 + 8( j − 1)2.

Similarly, since we can see that the number on either end of the “outer j-th
row” is 8 j( j − 1), we have

r j = q j + 8
j−1∑
	=1

	 + 8 j( j − 1)

= q j + 12 j( j − 1).
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Figure 5. Difference in sum of distances to any outer track, as measured from that of the
center vertex u.

So, we have with a little manipulation:

q j + r j = q j−1 + r j−1 + 40( j − 1)2

= 20 j( j − 1)(2 j − 1)/3.

Since pj = 6(qj + r j) we have proved Equation (3). Finally we can sum the
various terms and get Equation (2).

This is the last of the four “hexagonal models” for which Wiener numbers
have been computed. One possible extension is to hex carpets that looks like a
hexagon with three different edge-lengths.

We would also like to find, in some useful manner, the computation of the
q-analog of Wiener Indices W(Crn, q) = ∑

{u,v} qd(u,v). Unfortunately, while
we can brute-force the computation of the Wiener polynomial for the Crown
graph, it lends to no elegance whatever.
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