
Why Programming and Why Perl? 1

Chapter 1

Why Programming and Why Perl?

This chapter provides two central premises for the rest of the book. First,
why would a linguist, psycholinguist, literary theorist, and so on want to
know anything about programming? Second, why would Perl be a good
choice?

1.1 Why Programming?

Working with language data is nearly impossible these days without a com-
puter. Data are massaged, analyzed, sorted, and distributed on computers.
Various software packages are available for language researchers, but to
truly take control of this domain, some amount of programming expertise is
essential. Consider the following simple examples.

Imagine that you are a syntactician interested in the use of present-tense
verbs. You have an electronic corpus and want to find all the cases of verbs in
the present tense. How do you do it?

You’re a literary stylist and want to investigate the distribution of words
with iambic stress in Milton’s poetry.

Imagine you are a phonologist. You’re interested in consonant clusters.
You have an electronic dictionary and want to find the largest word-final
consonant cluster. Do you go through it by hand?

Finally, you’re a psycholinguist and you want to perform an experiment
investigating how people syllabify nonsense words.

All of these are fairly typical research tasks. If you don’t know how to
program yourself, you have only limited options. One possibility is to do the
job by hand. For example, the syntactician could simply print out the corpus
and go through it line by line. If the corpus is small enough, this might not be
so onerous, but if the corpus is large, or if one really wants to be sure of one’s

PFLC01 20/11/2002, 11:19 AM1



2 Why Programming and Why Perl?

results, then this method is fraught with peril (and really boring). Another
solution is to hire somebody else to do the job, but the same considerations
apply. Yet a third possibility is to make use of some existing software package.

This last option is occasionally workable, but can fall short in several
ways. First, an existing package is restricted by its design. That is, your needs
may not match what the software was designed to do, rendering your task
impossible or very difficult. Moreover, the software may not be intuitive, and
may require learning some arcane set of commands or some difficult control
language.1 Finally, while software may exist to do what you want, it may not
be available on the platform you work on (Windows, Mac, Unix), or may be
too costly.

1.2 Why Perl?

The Perl programming language may provide an answer. There are a number
of reasons why Perl may be an excellent choice.

First, Perl was designed for extracting information from text files. This
makes it ideal for many of the kinds of tasks language researchers need.

Second, there are free Perl implementations for every type of computer. It
doesn’t matter what kind of operating system you use or computer architec-
ture it’s running on. There is a free Perl implementation available.

Third, it’s free. Again, for any imaginable computer configuration, there is
a free Perl implementation.

Fourth, it’s extremely easy. In fact, it might not be an exaggeration to
claim that of the languages that can do the kinds of things language researchers
need, Perl may be the easiest to learn.

Fifth, Perl is an interpreted language. This means that you can write and
run your programs immediately without going through an explicit intermedi-
ate stage to convert your program into something that the computer will
understand.

Sixth, Perl is a natural choice for programming for the web. In chapter 9,
I’ll show how this presents some very useful opportunities to the language
researcher.

Finally, Perl is a powerful programming language. While Perl is optimized
for text manipulation, it can be used for just about anything else that one
might want to do with a programming language.2

What this means is that learning all of Perl would be a monumental task.
We won’t let this deter us though. My strategy will be to pick and choose.
I’ll introduce those bits of Perl necessary to do the kinds of things people
who work with language typically want to do. The rest – all the bells and
whistles we don’t need on our train – we’ll leave for later. I’ll let you know

PFLC01 20/11/2002, 11:19 AM2



Why Programming and Why Perl? 3

where they are and how to find out more, but we won’t digress to deal with
them here.

1.3 Download and Install Perl

You may already have Perl on your system. If you’re using some flavor of
Unix, type perl -v. If you already have Perl, the program should display what
version you have. It’s possible that you have Perl, but that the program is not
in your path. To check if it’s anywhere on your system, you can use the
where or whereis commands.

Under Windows, you should call up the MS-DOS prompt, and again type
perl -v. If Perl is on your system, but not in your path, you can use the
Windows Find File function to search for perl.exe.

For Macintosh, there is only one implementation of Perl, called MacPerl.
Find the MacPerl icon and click on it.3

If you do not have Perl on your computer system, you can obtain it for free
over the web. The following URL provides links to all implementations of
Perl: http://www.cpan.org.

At the time of writing, the most recent version of Perl available is version 5.
You should make sure that you have access to this version (or later), as the
previous version (4) is lacking a number of important properties.

1.4 How to Read this Book

Learning to program isn’t really hard, but you do need to do it the right way.
The key is to start programming right away. As you read this book, you
should make sure to try out the programs as we go through them. In fact, it
would be ideal to read the book at the computer. Also, don’t forget to try the
exercises! You’ll note that answers are not given at the end of the book. This
is for two reasons. First, having answers is a big temptation. More import-
antly, however, most of the exercises involve revising or writing programs.
There are often many ways to achieve the same goal and I would rather you
find some way to answer an exercise question than feel you have to find my
way of answering one of them.

Start by running the example programs exactly as given, either by
downloading them from the website or, even better, by typing them in your-
self. (Typing them in yourself will make the task familiar and draw your
attention to aspects of the code you might miss otherwise.)

When you start to feel more comfortable, try varying the code a bit. The
programs up through chapter 3 are perfectly safe and variations can’t harm

PFLC01 20/11/2002, 11:19 AM3



4 Why Programming and Why Perl?

your computer. After that point, certain operations should be handled with
care, but I’ll warn you about those as we go through.

The key, though, is to have fun!

Notes

1 This latter point may seem analogous to learning a programming language, but
notice that learning an arcane set of commands doesn’t generalize; you would need
to do that for every separate package that you have.

2 The only place where Perl is lacking is in terms of graphics and graphical user
interfaces. It’s not possible to directly construct windows, buttons, and the like all
in Perl. There are very reasonable ways around this limit, however. For example, as
I discuss in appendix B, the optional Tk module allows for graphical user interfaces
and other graphical programming.

3 As of MacOS X, generic Unix Perl is available for Macs as well.

PFLC01 20/11/2002, 11:19 AM4


