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JANET DEAN FODOR

1 Learnability Concerns

The study of language learnability is concerned with the “logical problem of
language acquisition” (Baker and McCarthy 1981). This is the problem of how
it is possible in principle to acquire a language, under various assumptions
about the learning mechanism and the information provided by the environ-
ment. Some studies are very abstract (e.g. Gold 1967). Others approach more
closely the properties of natural languages and human psychology, and the
nature of a normal child’s exposure to language (e.g. Pinker 1984). Realistic
models are of the most interest, but are thin on the ground at this still early
stage of the discipline.

Given that we are all living proof that natural language learning is possible,
what questions could arise about learnability in principle? Chomsky (1965
and elsewhere) drew attention to “the poverty of the stimulus,” the fact that
the environment provides less information than the eventual adult grammar
contains. This has been a key argument for the existence of innate linguistic
knowledge, which must apparently substitute for the missing environmental
information. The stimulus for language learning is impoverished in a num-
ber of ways. The sentences children hear (or digest) are typically simpler than
those they will produce and understand as adults. Negative data, concerning
what is ungrammatical in the target language, are largely absent (Marcus
1993). A child might hear Mice often eat cheese but no one bothers to mention
that *Mice eat often cheese is unacceptable. The language sample may include
ungrammatical and incomplete sentences, idioms and exceptions, all of which
could invite learners to posit overgenerating grammars. A parent’s elliptical
imperative No pushing, please should not be taken as a general model for
imperative formation permitting also *Much giving me cookies, please. Ambiguous
sentences, if wrongly structured by the learner, could also lead to incorrect
grammars. In English The mouse saw the cat means the mouse did the seeing,
but a learner who mistook it to mean that the cat saw the mouse could conclude
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that English allows object-verb-subject word order. Learnability theory has
concerned itself with each of these problems in turn.

Learning complex structures from simple input was the focus of the degree
n research of the 1970s. The sentences of an adult language are unbounded in
length and degree of embedding. Can they be projected from a subset of the
language which is limited to n degrees of clausal embedding? Working within
the Standard Theory of transformational grammar (Chomsky 1965), Hamburger,
Wexler and Culicover (reported in Wexler and Culicover 1980) demonstrated
degree 2 learning, given certain universal constraints of independent linguistic
interest. Following this heroic work, and taking advantage of even more strin-
gent constraints within Government Binding (GB) theory (Chomsky 1981,
1986a), Lightfoot (1989) argued that n can be reduced to zero “plus a little bit”:
the most that needs to be observed of an embedded clause is its complementizer
and the subject, with all else following by general principles. (For discussion,
see the commentaries following Lightfoot’s paper.)

The lack of systematic negative evidence took over as the issue of main
concern in the 1980s, with its moral that learning must be conservative. Changes
made to the learner’s developing grammar should obey the Subset Principle
(SP): the language generated by the newly hypothesized grammar should be
no larger than necessary to accommodate the learner’s input. (This idea is
evident in Gold 1967, and articulated by Angluin 1980, Berwick 1985, and
others.) SP imposes a default which learners must apply, for safety reasons,
when the evidence is not decisive. For example, a learner who has so far heard
subjects only before verbs should assume that subjects must precede verbs,
even though there are languages (like Italian) in which the subject may either
precede or follow the verb. The standard argument for the claim that SP is
necessary for successful learning is that a wrong grammar which generates a
proper superset of the target language cannot be recognized as wrong with-
out negative evidence. Examples were presented to show that the problem is
real: natural languages do stand in subset/superset relations one to another
(Manzini and Wexler 1987). However, it emerged that SP is too strong a remedy
to match the behavior of human learners. Counter-examples to conservative
learning were documented: in some domains (though by no means all) chil-
dren do posit a superset of the set of well-formed adult sentences, and later
retreat to the correct language (Hyams and Sigurjónsdóttir 1990).

Possible retreat mechanisms were outlined which do not require explicit
negative information. A negative fact might be innately linked to a positive
one and ride piggy-back on it (e.g. ungrammaticality of null subjects linked to
presence of an overt expletive; Hyams 1986). The non-occurrence of a construc-
tion in an expected context might be taken as evidence of its non-existence
(Chomsky 1981: ch. 1). The existence of a competing construction with the
same meaning could also signal ungrammaticality, if learners rely on a pre-
emption mechanism such as the Uniqueness Principle (Clark 1987).

SP is also too strong to allow learners to formulate valid generalizations cap-
tured by adult grammars. Under its influence, input sentences which manifest
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Figure 23.1 A non-subset cross-grammar ambiguity

a broad syntactic generalization would be absorbed piecemeal into the learner’s
grammar as a collection of individual constructional idioms. A truly conservat-
ive SP learner would be required to posit hordes of idioms and would never
attain the simple generalization. (For discussion see Fodor 1994.) To avoid
this misprediction, it might be assumed that learners will jettison SP in order
to keep their grammars simple. But then, how is it that restricted language
phenomena are transmitted from generation to generation without being over-
generalized on the way? Alternatively, it may be that learners are somehow
innately equipped to know which examples they should acquire individually,
and which they can and should generalize even though a more conservative
grammar is possible. This would be a more elaborate variant of the traditional
SP, possibly reflecting the different generalizing tendencies of different com-
ponents of the grammar: morphology, lexical subcategorization, non-lexical
syntax.

Many issues relating to the lack of negative data and the avoidance of (or
retreat from) overgeneration have still not been fully resolved. (For instance,
SP as it is usually construed is too weak as well as too strong, since two learn-
ing steps each in accord with SP can result in a superset of the target language;
see Clark 1988.) But interest shifted in the 1990s to another inadequacy of
learners’ input: the fact that some sentence types can be generated by more than
one grammar. This problem of cross-grammar ambiguity will be the focus of
the remainder of this chapter, so I need not detail it here. It may be useful,
though, to note how the study of cross-grammar ambiguity relates to the more
familiar SP studies.

Cross-grammar ambiguity occurs when a sentence construction (setting
aside here its particular lexical content) is compatible with more than one pos-
sible grammar, so that a learner cannot tell from encounter with the sentence
which grammar licensed it. A subset situation is just one case of this, in fact
the extreme case: every sentence belonging to the subset language (i.e., to both
languages) of a subset/superset pair is an instance of cross-grammar ambigu-
ity. This kind of ambiguity is dangerous. As we have noted, a superset guess,
if incorrect, would never be eliminated by unambiguous evidence requiring
the subset language. SP is the safe way of resolving this kind of ambiguity.
By contrast, it was widely held that no harm could result from guessing freely
in non-subset situations where an ambiguous sentence (s in figure 23.1) is
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shared by intersecting languages, each containing at least one sentence (t, u)
not contained in the other.

If the correct grammar is guessed, all is well. If the wrong grammar is
guessed, it can later be switched to the right one when an unambiguous input
such as t is encountered. There is no simple general principle (like SP) that a
wise learner could apply to resolve this kind of ambiguity, so it is just as well
that no real harm can come from guessing in this situation. However, this is a
case where the logical problem of language acquisition may underestimate the
psychological problem of language acquisition. Though the correct grammar
may be achieved eventually, the learner will have a wrong grammar (which
both over- and undergenerates) in the meantime. And how long the meantime
is depends on how much overlap there is between the target language and its
competitors, and how often unambiguous sentences occur in the input sample.
Moreover, the target is likely to overlap in a number of different respects with
a number of different competing languages, so that many wrong hypotheses
in need of eventual repair must be juggled at once.

The realization that non-subset grammar ambiguity is a serious practical
problem has been slowly filtering into learnability studies, propelled by the
insight of Clark (1992a and elsewhere) and the demonstration by Gibson and
Wexler (1994). Clark has emphasized the extent of this kind of ambiguity: it is
characteristic of the principles-and-parameters (P&P) theory of language that
parameter values interact in complex ways in the derivations of sentences.
The penalties for failing to unravel these interactions correctly may be severe.
Clark showed that “harmless” temporary errors can feed further errors. This is
because an incorrect grammar hypothesis may affect how subsequent inputs
are structured by the learner, so that an unambiguous sentence which ought
to correct the error may look like evidence for some other grammar instead.
Gibson and Wexler showed that even where unambiguous evidence is avail-
able for correcting a wrong grammar guess, the learner may have gone so far
astray that recovery of the correct grammar is not possible, given certain limits
on how much a grammar may be changed on a single learning trial. As will be
discussed below, this problem is compounded by the long-standing assump-
tion of a simple learning mechanism which is capable of using input evidence
only to disqualify wrong grammars, not as a constructive guide toward the
correct grammar. If human learners were designed like this, they would have
to resort to guessing a grammar even where there is enough information to
make guessing unnecessary.

The agenda for learnability research must therefore include an investigation
of how extensive cross-grammar ambiguity is, and how human learners man-
age to outsmart it. Are there effective strategies which limit the amount of
misdirection due to ambiguous input? Can learners differentiate ambiguous
from unambiguous input (or subset ambiguities from non-subset ambiguities)
and apply strategies relevant to each? Is it inevitable that strategies which
limit the randomness of guesses in ambiguous situations will render some
grammars unlearnable, as in Gibson and Wexler’s simulation?
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These questions largely postdate the theoretical shift from rule based to
principle based grammars, which created a watershed in learnability research
by enabling parameter setting as the primary means for grammar acquisition.
So cross-grammar ambiguity problems have mostly been formulated in terms
of ambiguity of the triggers for parameter setting. Linguists and acquisition
researchers have attempted to identify unambiguous triggers for all para-
meters postulated as part of Universal Grammar (UG). Until the seriousness of
the ambiguity problem came to light, there was considerable optimism that
the parametric model had left most learnability problems in the past. Previously,
it had had to be supposed that children must devise rules and constraints to
capture generalizations about the sentences they hear. But with the P&P theory,
language learning appeared instead to be just a simple quiz. Does the target
language permit or not permit phonologically null subjects? Do heads of con-
stituents precede or follow their complements? Do interrogative phrases move
(overtly) to clause initial position or remain in situ? As we will see, it matters
how many such questions there are for learners to answer. It is standardly
assumed that there are fewer parameters than there are possible rules in a rule
based framework; otherwise, it would be less obvious that the amount of
learning to be done is reduced in a parametric framework. A goal of linguistic
research has been to consolidate facts and posit as few parameters as pos-
sible consistent with crosslanguage variation. It might turn out that there are
20 parameters or 30 or 100 and more. Only continued linguistic research will
tell. On one recent estimate (Cinque 1999) there would be at least 32 para-
meters controlling the landing site for verb movement, perhaps multiplied by
the number of possible verb forms (finite/infinitive/past participle, etc.). But
I will make the working assumption here that there are exactly 20 binary
syntactic parameters. This modest estimate is quite sufficient to raise all the
questions of interest about how parameter setting could succeed in face of
input ambiguity.

2 Exponential Facts of Life

2.1 Exponential reduction
The most welcome aspect of parameter theory for learnability research is the
economy of descriptive means relative to the wealth of languages described.
How many natural languages are there? Clearly a very great many, even if
we set aside all differences in phonology, morphology, and the lexicon, and
think only of syntactic structure. In what follows I will take a language to be
an infinite set of structural descriptions of sentences, I will assume that each
language in this sense is defined by a unique grammar, and I will focus on
syntactic structure, using “grammar” as shorthand for “syntactic component of
a grammar.” If the number of languages is L, the minimum number of binary
parameters there could be is n, where n is the smallest integer such that 2n ≥ L.
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For any plausible value for L, n is very much smaller than L. This is why it is
important if learners can indeed distinguish which of L languages they are
hearing by answering just n simple questions about it.

Because the relationship is exponential, the bigger L is, the greater the re-
duction the parameterization brings. If there are a thousand languages, n can
be as low as 10, a reduction factor of 100. For a million languages, n need be
only 20, a reduction factor of 50,000. For a billion languages, n is 30, so L is
reduced by a factor greater than 30 million. In fact, the numbers are not quite
this favorable unless the n-dimensional parametric space has no holes in it;
that is, unless all parametric distinctions are fully orthogonal to all others, and
L = exactly 2n. But natural languages do not fully exploit the parameter space.
Some parameters are inapplicable to some languages, due to incompatibility
with their other parameter values or lexicon. For example, a parameter dis-
tinguishing single from multiple overt wh-movement is not applicable to a
language whose other parameter values exclude overt wh-movement. A non-
configurational language with free word order, like Warlpiri or Mohawk, will
have no need of values for the standard word order parameters. For such lan-
guages there is probably no answer to the question whether the object (always
pro, bound by the lexical phrase in adjunct position) precedes or follows the verb
(see Baker 1996). Non-relevance of some parameters to some languages is of
interest in learnability research, but can be largely ignored here until section 6.

It will be taken for granted here that the program of capturing natural
language differences by a set of binary choices is descriptively successful and,
more strongly, that it truly reflects the nature of UG. If so, then it seems that
all that a child has to do to acquire any one of a million languages is to sit and
listen for 20 sentences, each of which will reveal the value of one parameter.
Over the first three years a child hears very approximately 2,500,000 sentences,
or more than 2,000 per day, though this does not distinguish between those
the child digests and those she or he merely overhears (Geoffrey Pullum,
personal communication, based on statistics from Hart and Risley 1995). Since
every normal child succeeds in acquiring, more or less exactly, the language
to which she or he is exposed, we know that somewhere among the first five
(or six or seven) million sentences a child hears there is sufficient information
to determine, in conjunction with the information in UG, the correct set of
parameter values for the target language. The child’s only task is to extract
that information from the sentences.

If there were a complaint to be raised against the parameter setting model it
might be that it trivializes language acquisition. If learning is as easy as that,
how could it take so long? There are some plausible answers to this. Factors
such as processing limitations and the need for lexical learning would slow
down an inherently efficient syntax learning device. But these need not detain
us, because the real puzzle is not why real-life parameter setting is not quite as
easy as this “20 questions” metaphor might suggest, but why the 20 questions
mode of learning is so difficult. It is so difficult that nearly two decades after
Chomsky proposed it, computational linguists and psycholinguists are still
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struggling to implement it in a way that is consonant with the resources of a
normal child.

2.2 Exponential re-explosion
What all discussions overlooked, when Chomsky gave us this elegantly simple
concept, was that answering a single parametric question might be as labori-
ous (though in a different way) as hypothesizing and testing a rule was in
previous learning models. It was all too easy to take it for granted that each
of the small finite number of questions could be answered with a small finite
amount of effort. But in fact, on perfectly plausible assumptions, reviewed
below, the workload per question can be exponentially related to the number
of questions there are. That is: though the exponential reduction from L lan-
guages to n parameters still holds, there is an opposite and almost equal
exponential explosion from the number of parameters to the number of learn-
ing steps to set them, so that the latter is on the order of L or worse (Clark
1994). If so, the learner might just as well check out each grammar, one by one,
against the input; nothing has been gained by the parameterization.

The belated recognition of this fact is what is now driving research on ways
to implement parameter setting, in the hope of finding one that is relatively
immune to the problems of scale that exponential complexity creates. Some
ideas are discussed below. But first let us consider how compelling the evid-
ence is that in the case of natural language, a learner cannot simply extract 20
bits of information from the language sample at a modest constant cost per
item.

3 Parametric Ambiguity

3.1 Ambiguity and workload
To study the cost-per-parameter problem we need a measure of the learner’s
workload. As a rough measure that provides a common ground across other-
wise different models, let us identify the workload with the number of input
sentences that must be processed by the learner before learning is complete
(that is, by the time the learner has settled permanently on a grammar ident-
ical, or sufficiently similar, to the target). The more sentences consumed, the
slower and more laborious the acquisition process. Some learning systems
may put in more work on each input sentence than others do. But if there is a
practical limit on how much work a child could do per sentence before mov-
ing onto the next one in a discourse, the measure of sentences consumed is not
unuseful even for such systems.

A simple argument leads to the alarming conclusion that to set one para-
meter could cost the learner thousands or millions of input sentences. The
argument rests on the fact that the learner’s language sample is a set of word
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strings, while syntactic parameters determine sentence structure. Because a
string may be compatible with more than one structure, the input can be in-
determinate with respect to the structural properties that the learner must
have access to for parameter setting. It seems plausible that the difficulty of
setting parameters is a function of how structurally indeterminate (on aver-
age) an input word string is; that is, how many distinct structural descriptions
it could have. The learner’s task is to identify the structural description it
has in the target language. The more others it could be assigned, the greater
the opportunity for errors of parameter setting; or alternatively, the greater the
effort required to avoid errors.

The number of structural descriptions an input sentence could have is in the
worst case a function of how many grammars there are; that is, it is bounded
by L, not n. Each grammar might, in principle, assign a sentence a different
derivation. So if there are 20 parameters, there could be a million or so differ-
ent structural descriptions for any target language sentence, each correspond-
ing to a different array of parameter settings. Of course this is not the least
bit likely in reality. But it is important to recognize that this is the trend, the
direction in which the numbers will drift in the worst case.

Consider a simple example: a sequence consisting of just a verb followed by
its subject. This sequence does not have a million derivations. It is not licensed
by all natural language grammars, but it is licensed by many. In some cases
the parametrically relevant structure is the same. There are clusters of gram-
mars which differ with respect to other parameters but which are alike with
respect to the parameters relevant to licensing this sentence type (for example,
grammars that differ only with respect to object position or the acceptability
of headless relative clauses, etc.). But also, there are grammars which license
a VS sentence under different parametric descriptions. For simplicity here we
may bend the language facts a little and suppose there are just three relevant
parameters: one that controls postposing of a subject to follow the verb, as in
Italian (Burzio 1986); one that controls raising (fronting) of the verb to the
Inflection position, while the subject remains in its underlying position within
VP, as in Irish and Welsh (Koopman and Sportiche 1991); and one that con-
trols raising of the verb to the Complementizer position, as in German yes/no
questions, where the subject remains lower as Specifier of the Inflection phrase
(Taraldsen 1986). With another stretch of the imagination we may suppose
that the three parameter values which give VS order are not mutually exclus-
ive: two or more of them may be at work in the same language (as indeed
appears to be the case in Bantu languages like Shona and Swahili; see Demuth
and Harford in press). In that case there would be seven ways to obtain a VS
string, even if the underlying order is SV (Kayne 1994): by the parameter
setting for subject postposing, by the setting for verb to I, by the setting for
verb to C, by any pair of these in the same grammar, or by all three together;
only the negative value for all three in the same grammar would fail to license
VS order. The number of potential analyses here is not quite 23, but it is
bounded by 23, not by 3. Thus, the parametric indeterminacy of any target
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sentence can rise exponentially with the number of parameters in the language
domain.

Can this estimate of the degree of potential parametric ambiguity be resisted?
If not, we are heading breakneck toward the conclusion that setting even one
parameter can be exceedingly costly. We must re-examine the premises from
which the estimate was derived. A central one is that learners’ input consists
only of strings, not of syntactic structures. In fact this is too severe. Let us re-
consider it, along with other standard assumptions about the nature of the
input for learning. These are simplistic and too extreme, but they facilitate
formal work on learnability problems. They include the following:

i Learners consult only one sentence at a time (and have no memory for
prior sentences), and they do not have access to negative evidence.

ii For each language there is only one correct grammar, and the sample a
learner receives is compatible only with that one grammar; that is, the input
suffices to determine the target parameter settings. (Bertolo et al. 1997 and
Fodor in press discuss special cases.) As part of this I will assume here,
though it is unrealistic, that all sentences in the learner’s sample are well
formed in the target language.

iii A learner sets syntactic parameters only on the basis of sentences all of
whose lexical items are known. (For discussion of problems see Stabler
1998, Fodor in press.)

iv With more bearing on the ambiguity issue, we may follow Gibson and
Wexler (1994) and others in taking the input to be something more than
word strings though less than full structural descriptions. It is commonly
assumed that the words have been lexically categorized into nouns, verbs,
determiners, etc., and that the learner knows the grammatical roles of
constituents; for example, that an English learner knows that in The cat saw
the mouse, the cat is the subject of saw, and the mouse is its object. Modifying
a stronger assumption by Wexler and Culicover (1980), I will assume that
a child can determine part or all of the meaning of a sentence from the
verbal or non-verbal context and will not accept a syntactic analysis which
contradicts that meaning.

v Learners also use the prosodic contour to constrain the syntactic analysis
of the word string (Morgan 1986). Recent work on infant perception of
sentence prosody makes an excellent case for this as a practical possibility
(see Nespor et al. 1996, papers in Morgan and Demuth 1996, and references
there). Though prosodic phrasing does not faithfully reflect all aspects of
syntactic phrasing, sensitivity to prosody implies that input strings are at
least partially hierarchically structured.

On the basis of (iv) and (v) the extreme estimate of potential parametric
ambiguity can be toned down. Though this will not be emphasized in the
discussion below, it seems likely that semantic and prosodic information can
significantly shrink the structural indeterminacy of input strings and thereby
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facilitate syntactic learning. (This is different, however, from the more dramatic
claim implied by Mazuka 1996 and Nespor et al. 1996 that syntactic para-
meters may be prosodically triggered. This strikes me as less plausible, and the
existing empirical evidence does not favor one hypothesis over the other.) On
the other hand, the literature contains some examples of ambiguity for which
neither prosody nor meaning offers significant assistance. Clark (1988) noted
that an accusative subject of an infinitival complement is compatible with
either Exceptional Case Marking (ECM) or structural assignment of case in
infinitives. Gibson and Wexler (1994) observed that SVO word order is com-
patible with either the positive value of the Verb Second (V2) parameter (as in
German Die Mäuse sahen die Katze) or the negative value (as in English The mice
saw the cat). In both cases the meaning and prosodic contour for the competing
analyses can be essentially indistinguishable. (V2 constructions permit but do
not require a prosodic break before the verb.)

It seems fair to conclude, then, that the problem of parametric ambiguity
does not rest solely on the simplistic assumption that learners hear only un-
structured word strings. An ambiguity problem remains, even with a more
inclusive concept of learners’ input.

3.2 Younger learners work harder?
If a worst-case exponential relation between the number of parameters and the
extent of parametric ambiguity is not assailable, the only point at which the
exponential workload argument might be deflected is the postulate that para-
metric ambiguity must complicate the answering of parametric questions. That
assumption also seems indisputable, but our goal must be to find a way around
it if there is one. In section 4 I will argue that there is no general formula for
escaping the impact of ambiguity. It depends on the particular parametric
decoding procedure that a learning model employs. It also depends on how
cooperative the language facts are: the structural characteristics of languages
could be such as to minimize parametric ambiguity in the kinds of sentence
that children typically learn from even if the rest of a language were highly
ambiguous. However, first we should take a deeper look at the extent of the
problem. Two points need to be made. One adds to the ambiguity load; the
other can decrease it.

A plausible assumption, which will be important below, is that every syn-
tactic parameter that contributes to the licensing of a word string does so
via its effect on the structural description of the string. This is the case, for
example, for the ±verb second ambiguity of SVO strings, where The mice saw
the cat is −V2, while Die Mäuse sahen die Katze is +V2. On standard (though not
undisputed) assumptions, the +V2 analysis has the verb in C and the subject
as its Specifier, while on the −V2 analysis the verb is in some head position
lower than C. In other words: parametric ambiguity is associated with struc-
tural ambiguity. We may conjecture that this is always so (see Fodor 1998a for
discussion). Still, parametric ambiguity is distinct from structural ambiguity
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relative to a single grammar, such as in English Flying planes can be dangerous.
A learner qua learner does not care about within-language ambiguity. As long
as the right language has been hypothesized, that is sufficient, whether the
particular analysis that was intended by the speaker was retrieved or not.
Nevertheless, cross-grammar and within-grammar ambiguity can be difficult
to tell apart, particularly when one is a child and does not yet know what the
target grammar is. So within-language ambiguity may interfere with para-
meter setting. The extent of this problem is not known. Without at all under-
estimating its potentially damaging effects, I must set it aside here.

Second: what matters for learning is not how structurally ambiguous a string
is relative to all possible grammars, but how ambiguous it is relative to gram-
mars that the learner has not yet excluded as incorrect for the target language. I
will call the former gross ambiguity and the latter net ambiguity. Gross ambigu-
ity is a fact about the sentences in the learner’s language sample, in relation to
the domain of possible languages. (For convenience we may assume here that
gross ambiguity is evenly distributed across the sentences of the sample, though
in fact there is likely to be some variability; see section 6.) Net ambiguity,
on the other hand, is a fact about the learner’s state of knowledge as well as
the language sample. It represents the uncertainty still to be eliminated before
learning is complete. If learners set parameters decisively, and discard for ever
the disconfirmed values, then net ambiguity will decline across the course of
learning as more and more parameters are set. If the same sentence is encoun-
tered by a child at two years and again at four years, its net ambiguity will not
be the same on the two occasions because the child’s grammar will have
advanced in the meantime. What determines learning effort is presumably net
ambiguity; that is, how many structural descriptions an input sentence could
have for all the learner now knows. If this is right, it leads to the important con-
clusion that a beginning learner must work harder to set a parameter than a
more advanced learner would to set that same parameter.

The net ambiguity of a word string (i.e., the number of distinct structural
analyses it has on the basis of grammars not yet excluded by the learner) can
in principle be as high as 2(n−p), where n is the number of parameters in the
domain (all relevant to licensing the target language; see section 2.1) and p of
them have so far been set (correctly) by the learner. In a domain of 20 para-
meters, the net ambiguity of an input could be as high as 1,048,576 (the total
number of possible grammars) at the outset of learning. By the time all but one
of the parameters have been set, net ambiguity would be at most 2. Thus, the
first parameter setting event faces a potential net ambiguity up to half a mil-
lion times higher than the potential net ambiguity for the last one (regardless
of which parameters the learner happens to set first and last). The curve is the
familiar exponential decline: for setting the second parameter the maximum
degree of ambiguity would be half of that for setting the first; for setting the
third it would be half of that; and so on. If the total number of parameters to
be set is greater, the disparity between first and last is greater still. If there
were 50 relevant parameters, the multiplier would be 249, which is up in the
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trillions. If some parameters are irrelevant to the target language, the disparity
is less; for 15 relevant parameters the maximum ambiguity for setting the first
is only 16,384 times higher than for setting the last. It is clear, though, that for
any plausible number of parameters to be set, parameter setting difficulty is
far from uniform across the course of learning if it depends on the degree of
net parametric ambiguity of sentences.

The cheerful way to put this is: the task gets easier and easier as time goes
on. The more parameters you set, the easier it becomes to set more of them;
the more you know, the faster you learn. The disturbing side of it is: the
learning task is a great deal more onerous at first than it is later on. The less
you know the harder it is to learn. However small the cost of setting the last
parameter may be, that cost magnified a thousand- or a million-fold for the
setting of the first parameter is bound to add up to something unmanageable.

In summary: if the learner’s workload is a function of parametric ambiguity,
then the exponential reduction of L grammars down to n binary parameters
re-explodes into estimates on the order of L for the cost of setting each para-
meter, at least at early stages of learning when few parameters have been set.
This means that the greatest burden of learning is concentrated at a time when
learners presumably have the fewest resources and are in need of the greatest
assistance from the input. Once parameter setting is underway it may pro-
ceed efficiently, but early ambiguity is potentially so extreme that it is hard to
see how learners ever get started. Thus, parameter setting is not a feasible
means of language acquisition unless we can free it somehow from sensitivity
to parametric ambiguity.

4 Parametric Decoding

Learning a language is as easy – or as difficult – as answering 20 questions.
How easy that is depends on whether parametric ambiguity is the major
determinant of how much work it takes to find out the answers. If parametric
ambiguity is what paces parameter setting, then it is a mystery how learners
manage to set their first parameter. I will consider this mystery from the
psychocomputational modeler’s point of view rather than the empirical study
of children point of view. Later, I will consider briefly how well the two fit
together.

The goal is to create a blueprint for a learning system that can extract from
natural language sentences the information necessary to set 20 syntactic para-
meters, consuming only a reasonable number of input sentences, spread in a
reasonable way over the course of learning. To do this we must find either
(i) another factor which favors early learners and offsets their disadvantage
with respect to ambiguity, or (ii) a method for parameter setting that is relat-
ively insensitive to high degrees of ambiguity at any stage. I will proceed along
path (ii) here. For mathematical convenience I will for the most part be treating
parameters as anonymous entities with no particular linguistic content. Each
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is as likely to be expressed by a sentence as any other is; each is as likely to be
expressed ambiguously as any other is. In fact, there can be considerable vari-
ability in these respects. To allow for this in a more interesting and realistic
model entails looking at the character of natural language sentences and the
relation between sentences and the grammars that license them. I take this up
in section 6.

4.1 Decoding ambiguous input
Ideally, when the learning system encounters a novel kind of sentence (ambigu-
ous or otherwise) it would know exactly which parameter values entered into
the derivation by which that sentence was licensed in the grammar of its
utterer. Parametric ambiguity makes this impossible, of course; the child is
still trying to discern how the local adults are licensing their sentences. But at
least the learner would benefit from knowing which parameter value com-
binations could have licensed that sentence. Establishing this is what I call
parametric decoding. For example, on hearing an SVO string, the decoding device
would inform the learner that it could have been derived with parameter
values −V2, complement final, Specifier initial (as in English), or with +V2,
complement initial, Specifier initial (as in German), or with +V2, complement
final, Specifier initial (as in Swedish), or with +V2 and Specifier final, and so
on. (This parameterization follows Gibson and Wexler 1994, who assumed,
unlike Kayne 1994, that underlying word order differs across languages.)
Encountering a parametrically unambiguous string, the decoder would report
a unique parametric profile; for example, for a sequence of indirect object,
finite auxiliary, subject, direct object, and thematic verb (Den Mäusen habe ich
den Käse gegeben “I gave the cheese to the mice”), it would report the single
combination: +V2, complement initial, Specifier initial (if indeed this word
order is parametrically unambiguous; we may pretend that it is for now).

Once the parametric properties of an input have been decoded, the learner
could follow a strategy of adopting any parameter values that are common to
all analyses, in confidence that these values must be in the target grammar
(since they are values without which the sentence could not have been gener-
ated). For this ideal operating system, learning would be complete as soon as
each target parameter value had been unambiguously realized (expressed) in
the learner’s input. Thus, efficient parameter setting relies on efficient para-
metric decoding. In fact, the efficiency of decoding is seriously threatened by
ambiguity.

There is a widespread view that each parameter value is associated with
a “cue” which can be identified in a sentence and which then “triggers” the
adoption of that parameter value. With this in mind, I examine below (section
4.2) some proposals in the literature. They divide roughly into the optimistic
ones, which believe it can be done though they do not actually say how, and
the pessimistic ones, which have decided that it is hopeless. The latter assume
that learners do not even try to “read” parameter values accurately from
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sentences but operate by trial and error instead. Anyone who has read the
computational literature, and been puzzled by the lack of resemblance be-
tween recent learning models and the classical picture of setting parameters
by triggering, should note that this is not for lack of interest or enthusiasm for
the idea of triggering. It is due largely to the difficulty of modeling the para-
metric decoding process that triggering presupposes. Decoding problems have
had a profound effect on the directions that learnability theory has taken. In
section 4.3 I describe a novel decoding method which preserves the essence of
classical parameter triggering. Though somewhat unconventional, it is accur-
ate and efficient for parametrically unambiguous input. How it can best be
adapted for ambiguous input is the topic of section 5.

At best, the decoder merely presents the options, if an input sentence is
parametrically ambiguous. Deciding between them is the task of the learn-
ing component. The learner might wait for a sentence which unambiguously
expresses the parameter in question. But the wait may be a long one. It is
even possible that no sentence expresses the target value unambiguously, even
though it is unambiguous with respect to the language as a whole. As a simple
example: in Gibson and Wexler’s three-parameter domain, +V2 must be cor-
rect if some target sentences could be derived by +V2 or by −V2 with under-
lying SVO, and the rest could be derived by +V2 or by −V2 with underlying
SOV. Thus it seems that a learner must somehow triangulate from the multiple
parametric combinations for each individual sentence, to find the unique one
that is common to all the sentences in the sample. This is how a linguist might
go about the task. But a child is not a little linguist, and from a child’s per-
spective there is a two-fold problem with this approach. A real-life learner
cannot afford to wait to hear the whole sample before having any grammar to
use for comprehension and production. And the chore of making all the cross-
comparisons between large sets of parameter value combinations would be
enormous. So, although this is the logic of the answer to parametric ambiguity,
we must hope there are other ways for learners to actually go about finding
the common denominator across sentences. A goal of computational psycho-
linguistics is to devise a way that is effective, is not too labor intensive, and is
incremental, able to make progress one sentence at a time.

This is where decoding and ambiguity interact. The decoding system is the
gateway through which information about sentences reaches the parameter
setting system. The learner’s range of options for dealing with ambiguity is lim-
ited by what the decoder can deliver. The major issue turns out to be whether
or not the work of identifying a set of parameter values that can license a
sentence is so effortful that it cannot reasonably be done more than once per
sentence. This is important because if multiple decoding is not feasible, then
a learner cannot know whether a sentence is parametrically ambiguous. The
only way to deal with ambiguity then would be by ignoring it. The decoder
would deliver just one set of parameter values for an ambiguous sentence. The
learner would have no choice but to accept the information as if it were derived
from an unambiguous sentence and would adopt those values, quite possibly
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incorrectly. If multiple decoding is feasible but only up to some limit, learners
would be little better off, because incomplete decoding would still not distin-
guish reliably between ambiguous and unambiguous sentences. Only if it is
able to check out all possible ways of licensing a string could the learner tell
reliably (in the worst case) whether more than one way exists.

Thus, nothing short of total decoding of all ways of licensing a sentence
would have to be feasible if learners are to sort ambiguous from unambiguous
input accurately enough never to set a parameter on the basis of an ambigu-
ous string. However, with ambiguity levels as high as they are in natural
language (even if a million grammars per sentence is a vast exaggeration), full
decoding is not a serious possibility. In order to abbreviate the discussion
below, I impose here and now a blanket ban on any decoding scheme which
presumes that a child analyzes (parses) and reanalyzes the same utterance
more than a dozen times, or that a child conducts a single parallel parse in
which more than a dozen analyses are computed simultaneously. Decoding
on such a scale is not psychologically realistic. Yet as we have seen, decoding
on any lesser scale provides the parameter setting device with insufficient
information to do its job of triangulation accurately.

In summary: parametric ambiguity puts a tremendously heavy strain on
the decoding system. If the decoding system cannot rise to the challenge, then
the learner’s task of finding the unique set of parameter values for the whole
language, which is already substantial, is further hampered by uncertainty
about the range of candidate values for individual sentences. High-precision
parameter setting is then not possible.

4.2 Decoding methods
There was a time when we thought we knew how learners decode the para-
metric signatures of sentences. According to the familiar metaphor, attributed by
Chomsky (1986a) to James Higginbotham, parameter setting is effected by auto-
matic flipping of parameter switches by relevant “trigger” sentences. This neat
idea holds a special place in the history of the P&P model and it is a shame to
have to relinquish it, but it has been tried and found wanting – Computational
linguists have turned in recent years to very different mechanisms. Figure 23.2
maps some approaches that have been devised so far. I will describe how they
work, and in section 5 I will consider how they respond to heavy doses of
parametric ambiguity.

Method (a) is automatic switch flipping. For it to work, each switch must be
equipped with a property detector responsive to the trigger property (or prop-
erties) for that parameter; that is, the particular properties of sentences which
reveal the parameter’s value. Since all 20 (or 40, if parameters are not pre-set
to default values) detectors check the string at once, it is reasonable to suppose
that they do not process it very deeply. If they did, this model would violate
the ban (section 4.1) on excessive parallel processing and would be disquali-
fied on that ground. The trigger properties must therefore be superficial and
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Figure 23.2 Parametric decoding methods

easily recognizable. And that is simply not true for many natural language
parameters. Perhaps it is for some. Perhaps multiple overt wh-movement within
the same clause is identifiable in a surface word string (though probably even
that is not totally reliable: imagine an SOV sentence with two wh-arguments).
However, in many cases the relevant facts are non-surface facts (e.g. the origins
rather than the landing sites of movement) which are likely to be less access-
ible. Underlying word order is very often obscured by movement operations,
and one movement operation may be masked by a later one. So even when
derivational operations do not create ambiguity, there may still be no easily
perceptible surface sign by which to detect the presence of a particular para-
meter value (Clark 1994).

Methods (b) and (c) are truer to the facts of natural language since they
allow for deeper, more abstract trigger properties, as in the “cue-based theory”
of Lightfoot (1997). Lightfoot’s account differs from instant triggering in
two ways: its cues (equivalent to trigger properties) are abstract “elements of
I-language”; and the metaphor of flipping switches gives way to that of the
learner “scanning sentences” for the cues. An example of what learners must
watch out for is the configuration SpecCP[XP], which Lightfoot proposes as the
cue for the positive value of the V2 parameter. Though linguistically more
authentic, this approach fails procedurally in just the same way as instant
triggering does. Few details are offered in the literature, but in figure 23.2 I
have distinguished two possible implementations of abstract cue search. On
version (b) without prior sentence parsing, the learner would have to identify
the abstract cue structures from unstructured word strings. This will not work.
There is no obvious way for a learner (not knowing the right grammar) to
identify an XP (say, a DP) in an unstructured word string. And even if it could,
it surely could not establish that this phrase is in SpecCP position, rather than
in underlying subject position, or adjoined to IP by scrambling, and so forth.
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With partially structured input strings as envisaged in (iv) of section 3.1, the
hopelessness of this task would be diminished, but not to the point at which it
would be a reliable basis for learning.

On version (c), the input is first fully parsed in order to uncover its more
abstract derivational properties on the basis of which I-language cues could be
identified. But this is quite unrealistic because it requires multiple parsings
of the sentence. For instance: for purposes of recognizing the I-language cue
for the +V2 parameter value, the parser must assign to the string the analysis
it would have if it were licensed by the +V2 value (plus appropriate values
of other parameters). Only then will the cue SpecCP[XP] be present for the “scan-
ner” to find.

In other words, “scanning a sentence” for the cue for parameter value Pi (v)
entails parsing the sentence with parameter value Pi (v). But a sentence cannot
normally be parsed with just one parameter value, and since the learner does
not yet know what the target parameter values are, it would have to parse the
sentence with Pi (v) together with many combinations of values of the other
parameters until it found one that succeeded for the sentence – even an unam-
biguous sentence. For ambiguity detection, it would (in the worst case) have to
try out Pi (v) with all combinations of the other parameters that have not yet
been set. Thus on version (c) of the cue based approach, the learner’s work-
load explodes just as anticipated in section 3. Whether the multiple parses are
conducted in parallel or sequentially, they clearly disqualify abstract cue search
under the excessive processing criterion. Hence, the recognition of abstract
cues is either approximate or infeasible. Reliable decoding is impossible in the
absence of an effective way of spotting the cues that are present; see section 5.1
below.

The best-known representative of approach (d) is the Triggering Learning
Algorithm (TLA) of Gibson and Wexler (1994). As in the second (postparsing)
implementation of abstract cue search, this learner tries out grammars on
input strings without knowing in advance which will work. But rather than
seeking pre-defined cues for particular parameters, it takes success in parsing
the sentence as the mark of whether a grammar is right for the target, or at
least as a sign that it shares parameter values with the right grammar. For each
input the TLA tries just one new grammar, so it satisfies the processing feas-
ibility criterion. But given that there are a million or more grammars that could
need checking, this is inevitably a slow method. In figure 23.2 this approach
is filed under analysis by synthesis (ABS) methods, because the TLA does not
start by observing the sentence and trying to compute the right parameter
values from it; instead, it first picks a combination of parameter values and
only then tries them out to see whether or not they are compatible with the
sentence. It is well known that ABS methods can be very wasteful of resources
if undirected. The chance of hitting on the right answer out of the blue is slim
(see Fodor et al. 1974: ch. 6). To increase the efficiency of the TLA, Gibson and
Wexler gave it some direction: its guesses as to which grammar to try next are
influenced by feedback on the success or failure of previous guesses. Specifically,
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its guesses are limited to grammars which differ by no more than one para-
meter value from the grammar with which it most recently succeeded in parsing
an input sentence. So if a grammar is successful for a while before it fails on
some new input, many of its parameter values will be preserved in subsequent
hypotheses. This strategy of staying in one neighborhood among the class of
possible grammars, and gradually moving toward the target, is designed to
save the learner from having to try out every possible grammar in the domain.

However, we have noted that parsing a sentence calls for a whole grammarful
of parameter values, not just one. And this means that the TLA’s positive and
negative feedback, provided by success or failure in parsing input, applies to
whole grammars; it cannot be attuned very closely to the correctness of indi-
vidual target parameter values. Suppose, for example, that the learner has
tried out a grammar, has found that it fails to parse an input sentence, and
then tries parsing that sentence again after flipping parameter P7, which was
previously set at the wrong value. P7 is now correctly set, so this is progress
and ideally would be rewarded to encourage retention of the new value. How-
ever, it is very likely (especially early on in the course of learning) that para-
meters other than P7 are set wrong, and that the grammar with the correct
value for P7 will fail to parse the input sentence for that reason. Hence the
tentative shift to the correct value for P7 will be negatively reinforced; the
learner is discouraged from making the change. (In this circumstance the TLA
reverts to whatever grammar it had previously hypothesized, even though
unsuccessful.)

In short: decoding is largely a hit or miss affair for the TLA due to its ABS
approach, its evaluation of whole grammars, and the very ragged feedback
provided by parsing success or failure. Because finding even one grammar
that parses a given input is such a matter of chance, finding more than one per
sentence is out of the question, so there is no possibility of ambiguity detec-
tion. The TLA therefore disregards ambiguity. It accepts any grammar it finds
that works for a sentence, without checking whether others would have too.
As a guessing system, it pays the price of parametric ambiguity in errors. And
correcting its errors requires repeating the travails of decoding.

Method (e) in figure 23.2 represents learning systems which resemble the
TLA in that they try out grammars on sentences and use parsing success as
reinforcement, but which work faster by testing batches of many grammars
at a time on a single input sentence. The best-known example of this is the
genetic algorithm of Clark (1992a) and Clark and Roberts (1993). It records how
successfully each grammar tested on a sentence can parse it, it stores the suc-
cess scores of all the grammars, and it “breeds” the more successful grammars,
mingling their parameter values to create a new pool of even better candidates
for a next round of testing. Genetic algorithms have been a focus of recent
interest for machine learning applications. But massive multiple grammar test-
ing on each input clearly does not meet the feasibility criterion for human
language processing. (Nyberg 1992 blends storage of parse success rates, as in
a genetic algorithm, with TLA-like search through the grammar space.)
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There is also method (f), represented by the Structural Triggers Learner
(STL) of Fodor (1995, 1998a), not shown in figure 23.2 because it cuts across
the tidy classification. It combines elements of the other approaches with one
new twist in parametric decoding. It takes the structural cues of (b) and (c),
but instead of looking for them in sentences, it parses with them as in (d) and
(e), checking all parameter values simultaneously as in (a). As I will show, this
can give highly efficient parameter decoding for unambiguous sentences and
reliable ambiguity detection.

4.3 The Structural Triggers decoder
To explain the STL, let us start from cue search. This assumes that each para-
meter value is associated with some detectable structural property, an aspect
of tree structure. I have proposed in earlier work (Fodor 1995, 1998a) that
a parameter value can be identified with its structural cue, which I call a treelet
or structural trigger, and which I take to be the deepest manifestation of the
parameter value, the source of all its effects on the derivations of sentences
that it contributes to. Exactly what that structural essence is may depend on
the linguistic theory that is assumed. In the original P&P theory there was no
very clear theory of possible parameters, and not all proposed instances took
the form of a choice between tree fragments. (For discussion see Fodor 1998d.)
In the Minimalist Program (Chomsky 1995b), parameter values are identified
with the formal features of functional heads, which control derivational opera-
tions. For example, where the structural trigger for +V2 in Lightfoot’s model is
an XP in SpecCP position, in a Minimalist framework it might be a strong
Specifier feature on the C head, which will attract an XP to check it. For −V2
the corresponding feature would be weak. Formal features are (very small)
tree fragments, and are not themselves derivable from any deeper fact about
the language. So these featural parameter values meet the needs of the STL.

The merging of the roles of parameter value and trigger (cue) into one entity
(a treelet) in the STL model is of theoretical interest but is not essential to the
success of the STL’s parameter decoding system. All that would be lost with-
out it is some conceptual elegance and a modicum of representational economy.
More important for learnability is the fact that the decoding method works
even if the structural property that defines the parameter in UG is not directly
discernible in the learner’s input. As long as it leaves its imprint on deriva-
tions, however non-transparently, the STL will find it.

This is how the STL works. The treelets constitute an innate (UG-supplied)
lexicon of parameter values. Every natural language grammar contains some
subset of these treelets, which combine with universal grammar principles
and a language-specific lexicon of morphemes and words to license the sen-
tences of the language. The learner’s task is to adopt from the universal treelet
lexicon the treelets that are correct for the target language. The STL adopts a
treelet into its hypothesized grammar just in case it is necessary for parsing an
input sentence. Encountering a sentence, the parsing component tries to parse
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it employing the learning component’s currently hypothesized grammar. If
the parse fails at some point, the parsing component is then permitted to draw
on any of the innate treelets that have not yet been adopted, adding them
temporarily into the learner’s working grammar. At least one of the treelets in
the innate parametric lexicon must be capable of unblocking the parse (unless
the failure is purely lexical, which will not be considered here). If only one
treelet does so, it is evidently necessary for licensing the target language and
so it is added into the learner’s grammar. From then on, it can be used to
produce new sentences, and to parse incoming ones.

Note that a similar procedure could work if a parameter value were identi-
fied with something less concrete than a tree fragment, such as a phrase struc-
ture rule, or possibly some sort of abstract statement from which the legitimacy
of such a treelet would follow; differences of this sort do not matter. The one
crucial requirement is that the parsing mechanism, when it finds itself unable
to continue the parse, should be able to identify efficiently any parameter
value(s) capable of supplying the missing part of the parse tree so that forward
parsing can proceed. We know that the parser can do this very efficiently in
general, when the existing grammar suffices for the sentence. It rummages
through its collection of tree-building devices to find what is needed to con-
nect each word of the sentence into the parse tree. The STL merely extends this
to include the small number of additional tree-building aids that constitute the
parameter values.

The STL is representationally economical. If there are n parameters, then as
few as n small tree fragments or features need to be innately represented to
characterize the set of UG-defined parameter values/triggers. For 20 para-
meters, the innate treelet lexicon would contain 40 entries if a parameter is
a choice between two treelets (e.g. a strong or a weak feature), either one of
which may be adopted into the grammar of a particular natural language.
There would be only 20 items in the parametric lexicon if a parameter is a
choice between adopting a certain treelet (a strong feature) or not adopting
it. I will not adjudicate between these two possibilities here. The STL is also
procedurally economical, since it tries out all possible parameter value combina-
tions in a single serial parse (see discussion below), using a grammar which is
a perfectly normal natural language grammar such as the human sentence
parser works with all the time, except only that it contains more of the UG-
provided treelets than (adult) natural language grammars normally do. It is
not even necessary for the learner to go through the two-step process of try-
ing to parse an input with the currently hypothesized grammar, failing, and
then parsing again using the extra treelets. The STL can just as well apply the
treelet-augmented grammar right away to every sentence it encounters, as long
as the treelets already adopted are given priority over others whenever there
is a choice of which to employ. The extra richness of the augmented grammar
may be expected to elevate the incidence of temporary ambiguity and con-
sequent garden-pathing for the parser, but this is strictly limited to those
points in sentences for which the learner’s currently hypothesized grammar is
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inadequate and learning must occur. Elsewhere, parsing complexity remains
within normal adult bounds. For example, the child is assumed to parse sen-
tences in order to comprehend them, as adults do; and for that purpose the
child’s parser computes just one syntactic analysis for each sentence, as is
widely assumed to be the case in adult parsing.

A serious workload explosion would result if the parser were required to
compute every analysis of a parametrically ambiguous sentence. But this is
clearly ruled out by the feasibility criterion. I assume the most the parser can
be asked to do is to note when an ambiguity point arises in the course of
analyzing a sentence. For example, it should flag the fact that an incoming
noun might be attached into the sentence structure as either a subject or an
object; or that a subject is attachable as Specifier of CP or of IP or of VP; or that
a PP might be attached as daughter to VP or into an NP as a modifier of the
noun. The existence of a choice point in the parse is a sign that the word string
is structurally ambiguous. If the choice lies between two (or more) aspects of
the learner’s current grammar, it is not a parametric ambiguity. We can assume
it is resolved in the usual fashion, by Minimal Attachment and/or whatever
other parsing strategies are active in children; see Trueswell et al. (in press).
Within-language ambiguity is excluded from further consideration here. If the
choice is between the current grammar and an as yet unadopted UG treelet, it
will be resolved in favor of the former, since the STL model assumes, as do all
“error-driven” models, that the current grammar should not be changed as
long as it continues to be compatible with the input. Or the parser’s choice
may be between two (or more) novel treelets, neither of which is part of the
current grammar. In that case the parser may opt for one analysis rather than
the other in order to assign meaning to the sentence. But the learning device –
if it wants to avoid risks – must not set any parameters on the basis of the
analysis the parser has chosen. In general: whenever the parser picks one route
to follow and does not compute through the alternative analyses, a conservat-
ive learner will want to be notified, so that it can refrain from setting any
further parameters on the basis of that sentence. No treelet utilized at or after
the ambiguity point can be guaranteed correct, because the sentence may have
some other structural analysis, employing other parametric treelets, that the
parser does not know about.

Unlike other decoding systems that have been proposed, the STL can also
reliably detect that there is no parametric ambiguity in some input sentence.
Where that is so, parameter setting (adoption of a new treelet) can proceed
safely. The outcome will be correct, and the learning system will know that
it is correct, so that other decisions can be based on it. The new and interest-
ing issue raised by this decoding system is what a learner should do when
the parser detects that parametric ambiguity is (or may be) present and alerts
the learning system. Should it stop learning immediately, to avoid danger of
errors? That is what the earliest STL model did. It embodied the belief of many
theoretical linguists that every (non-default) parameter value must have a
unique trigger that is readily accessible to learners. If that is so, the wisest
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strategy is just patience and precision. But if the necessary unambiguous triggers
do not exist, or are not guaranteed to come by frequently enough to expedite
learning, then perhaps it would be more efficient overall to be less patient and
less precise. Which strategy is optimal for natural languages? And which is
what children do? These questions are opened for debate in sections 5.2 and 5.3.

5 Consequences of Ambiguity

We can now consider the decision strategies a learner might employ to choose
which grammar to shift to when its current grammar has just failed on an
input sentence. The case of interest is where the input sentence does not decide
the matter because it is parametrically ambiguous – or may be, for all the
learner knows. And the central question is: what effect does the degree of para-
metric ambiguity have on the effectiveness of different decision strategies? In
particular: is there a learning model that is relatively immune to the high level
of ambiguity in natural language, as children appear to be?

5.1 Without ambiguity detection: errors
As noted in section 4.2, learning models that meet the realistic processing load
criterion are generally unable to detect parametric ambiguity, because para-
metric decoding other than by method (f) is such a struggle. In models other
than the STL, therefore, if the decoding system can find any way to license
a sentence, the learner must settle for it as if it were the only way. This is
equivalent to guessing which of the possible parametric analyses of a sentence
is correct. The effect of ambiguity is obvious: the greater the ambiguity, the
greater the pool of candidates, so the less constrained the guess. As a result,
the trajectory through the domain of possible grammars which should bring
the learner’s guesses closer and closer to the target is not so well directed. The
feedback from parsing success is not systematically related to the learner’s
parametric choices. In section 4.2 we observed that a move in the right
direction may fail to be positively reinforced because some other aspect of
the grammar is still incorrect. Once ambiguity is added in, the opposite also
occurs: the learner may be positively reinforced by parsing success when it
sets a parameter to the wrong value. Hence, in an ambiguous domain, time
and effort can be wasted pursuing trails that lead nowhere.

The damage done by false feedback might even be permanent. It is an open
question whether an ambiguity-blind system like the TLA could be led into
superset errors which are uncorrectable. This is an obvious danger in any non-
deterministic model which makes errors and hopes to be able to correct them
later. (I use the term deterministic here in the sense made familiar in parsing
theory by Marcus 1980, to denote unrevisable, or “indelible,” computations. In
non-deterministic learning, a parameter that has been set one way could later
be reset to its opposite value. See discussion by Clahsen 1990.)
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Even if errors are not permanent, they can be costly. They increase the
learner’s total workload by requiring parameters to be reset possibly many
times en route to the target grammar. This cost of making errors is beginning
to be quantified (in terms of additional inputs needed before convergence
on the target grammar); see Berwick and Niyogi (1996) and Sakas and Fodor
(in press). Since errors are unavoidable for a non-deterministic learning pro-
cedure, the costs of error correction need to be minimized. Such a learner
is therefore best paired with a highly efficient mechanism for decoding and
(re)setting parameters. For this reason, the non-deterministic response to
ambiguity can be evaluated most favorably if it is implemented not in the TLA
framework but in combination with the treelets decoding method of the STL,
which has a more constructive system for finding a candidate grammar able
to parse a given sentence. A non-deterministic version of the STL is outlined in
section 5.3.

For cue search systems such as Lightfoot’s the consequences of ambiguity
are harder to assess, because no effective method of cue recognition is speci-
fied. In a recent presentation Lightfoot (1998) adopts some aspects of the STL
model, such as the identification of cues and parameter values (though, oddly,
without adjusting the proposed cues to reflect the true content of the para-
meter values; see section 4.3 above), but he does not take advantage of the
treelet parsing method for parametrically decoding the input. An input sen-
tence receives a single parse, often incomplete, possibly incorrect; how it is
assigned is unclear. “As a child understands an utterance, even partially, she
has some kind of mental representation of the utterance. These are partial
parses” and they are scanned for I-language cues (Lightfoot 1998: 4). This is
not very informative, though it is reminiscent of other learning systems that
construct parse trees by guesswork tempered by UG principles, such as Fodor
(1989) and Clark (1996). In any case, it is clear from Lightfoot’s description that
the cue search system is not intended to be error free. In fact it is capable of
errors even when correct information is available, since it does not respond
to a cue until it has encountered it with some fairly substantial frequency. This
is why language change occurs when the frequency of occurrence of a cue
declines for any reason (e.g. loss of English verb-to-I movement by the eight-
eenth century, following the rise of periphrastic do and other changes that
reduced the number of constructions in which the verb was visibly raised over
another element such as the subject or negation).

Thus the cue based model makes guesses, as the TLA does. So it makes
errors, at least some of which it subsequently corrects. However, the frequency
sensitivity explanation for historical change suggests that, unlike the TLA, this
is not a one-trial-learning device. Rather than resetting a parameter on the
strength of one conflicting input sentence, this learner may be designed to
collect up the weight of evidence for and against each parameter value, and
to adopt a value decisively only when the evidence in favor of it exceeds
some threshold. This would be similar to proposals made by Kapur (1994)
and Valian (1990). To what extent such a system would make overt errors in
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production and perception during its period of indecisiveness concerning each
parameter would depend on its strategy. It might employ on every occasion
whichever value of the parameter was temporarily ahead; or it might employ
both values, with probabilities in proportion to their relative standing; and so
on. From the learner’s point of view, the effect of increased ambiguity would
be to spin out the adjudication process between the alternative values of a
parameter, and postpone the time at which any values could be eliminated
from consideration.

If this is what is intended by way of ambiguity management for the cue
based model, it too can be implemented in a manner not unlike the non-
deterministic variant of the STL to be described in section 5.3. As was observed
in section 4, the concept of I-language structural cues is highly compatible
with the notion of structural triggers, or treelets, on which the STL decoding
system relies. So the cue based model could select any of a range of STL-type
systems as its implementation, to supply the missing machinery for creating
parse trees for novel input sentences. The non-deterministic STL described in
section 5.3 is probably most in keeping with Lightfoot’s theory.

5.2 With ambiguity detection: delay
The treelet-based parametric decoder of the STL model can determine that an
input sentence is parametrically ambiguous though it cannot reasonably com-
pute more than one analysis for each sentence. In fact the STL overestimates
parametric ambiguity, since the parser will flag an ambiguity point when it
encounters mere within-language structural ambiguities, or temporary ambigu-
ities which are resolved later in the sentence, neither of which would in fact
derail parameter setting. But though it sometimes overreacts, it never misses a
parametric ambiguity. (Almost never; see discussion in Fodor 1998c.)

A learning system capable of detecting ambiguity has two choices for deal-
ing with it. The learner can be conservative and refrain from setting para-
meters on the basis of any part of a sentence that is within the scope of an
ambiguity. Or it can take risks by guessing which of the competing analyses
is the correct one. The first strategy is suitable for a deterministic learner, and
the second for a non-deterministic one, in the sense defined above. A conservat-
ive, deterministic version of the STL makes only correct decisions. As I will
show, it pays the price of ambiguity in the time it must wait for unambiguous
inputs to learn from (if indeed they exist). A non-deterministic version of the
STL goes much faster but makes some wrong decisions; it pays for ambigu-
ity in errors and the need for error correction, as the TLA and other guess-
ing systems do. As noted in section 4, the earliest STL models were strictly
conservative (Fodor 1995, 1998a, and the “weak STL” of Sakas and Fodor in
press). But that is only possible if the input is cooperative; it may be expecting
too much of the quality of input that children really receive. A version of the
STL that does not always wait for perfect input might be more successful and
provide a better match for human learners. We need to know, and one good
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way to find out is to compare the two variants to see how resilient they are to
attack by parametric ambiguity.

From now on I will refer to the conservative version of the STL as the D-STL
(for deterministic STL). The D-STL sets parameters (adopts new treelets) on-
line, when needed to enable the parser to analyze an input sentence, but it
ceases parameter setting as soon as the parser detects any ambiguity point in
a sentence – a point of net ambiguity, resolved neither by the input nor by the
grammar acquired so far. Parsing continues past this point for comprehension
purposes, but the learning system discards the remainder of the sentence as a
basis for parameter setting. It may thereby waste some reliable information,
since, as noted, it sometimes perceives parametric ambiguity where none is
present. But its discard policy is at least more rational than that of other
models. The TLA, for example, discards many inputs – including unambiguous
ones – due to decoding failures, but sets parameters on the basis of ambiguous
and unambiguous inputs alike. The D-STL discards all ambiguous and some
unambiguous inputs and learns from the unambiguous remainder.

The D-STL’s discard rate is necessarily higher the greater the net parametric
ambiguity of the target language sample. And when input is discarded, noth-
ing is learned from it. Therefore, in a language domain which is highly ambigu-
ous the D-STL sets parameters less frequently than when ambiguity is low; it
consumes more input sentences for each parameter it sets. At the same time,
the D-STL shows the progressive disambiguation effect noted in section 3.2:
learning speed picks up over the course of learning as more and more para-
meter values are pinned down. Establishing a parameter value means that a
target treelet has been adopted into the learner’s grammar, where it becomes a
source of certainty rather than uncertainty for the parser. On standard assump-
tions, to adopt one value of a parameter is to reject its other value (e.g. adopting
complement initial for VP amounts to rejecting complement final for VP). So
adopting a treelet has the effect of shrinking the collection of treelets waiting
in the wings to be called on if the current grammar fails. And that increases
the probability that the parse is rescuable by only one treelet, which would
allow that treelet then to be adopted. Thus each parameter that is set makes it
easier to set the next one.

Nevertheless, we have discovered from working on this model that for the
D-STL, or any other conservative learning device, the delays between usable
inputs can be very long indeed. The reason was touched on at the end of
section 4.3: a conservative learner must discard not only parts of sentences it
knows to be parametrically ambiguous (net ambiguous), but also parts of
sentences which it has not fully tracked and so does not know are not para-
metrically ambiguous. This covers a lot of ground, since for a serial parsing
device any part of a sentence to the right of an ambiguity is less than fully
monitored. What this adds up to is that the D-STL discards input for purposes
of setting one parameter, say P7, not merely if it is ambiguous with respect
to P7 but also if it is ambiguous (net ambiguous) with respect to any other
parameter(s). For instance, until it had determined whether the target language
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is +V2 or −V2, it could set no parameters controlling phenomena in the VP
(e.g. indirect objects), because they would be masked by the ±V2 ambiguity to
their left. Absurd as this might seem, it is a consequence of the extreme cau-
tiousness that is necessary in a deterministic system. (Note that I assume here
no meta-knowledge on the part of the learner about which parameters could
or could not interact with each other in derivations.) Thus, the only usable
data for parameter setting by the D-STL are sentences or parts of sentences
in which, to the left of any ambiguity (within-grammar or cross-grammar
ambiguity), a target treelet not yet in the learner’s grammar is expressed un-
ambiguously; that is, the sentence cannot be parsed without it.

Probabilities can be assigned to the factors relevant to speed of learning (e.g.
the probability that the currently hypothesized grammar will fail on an input,
the probability that the failure point at which the parse crashes precedes any
ambiguity in the sentence, the probability that a unique UG treelet is able to
rescue the parse), and the mathematics can be worked through to give the
probability of usable data at various degrees of overall parametric ambiguity.
(See Sakas and Fodor in press for mathematical considerations.) From this, the
average wait between parameter setting events can be calculated. It is, unfortu-
nately, very high indeed for anything approaching realistic degrees of ambigu-
ity: millions of sentences, in some cases, between parameter setting events.
Moreover, the average wait is less than the maximum wait, which is what
counts if we are to ensure that every learner attains the target in a reasonable
time. There are simplifying assumptions entering into these computations which
are most likely too stringent for real life. Also, our calculations so far have not
included the ameliorating effects of progressive disambiguation, by which the
average delay between usable inputs decreases rapidly as learning proceeds.
So these are by no means final estimates. But these early results stand at least
as a warning that waiting for unambiguous input to learn from can be a costly
strategy.

To summarize: D-STL acquisition comes close to the ideal of setting para-
meters accurately, once and for all, in response to unambiguous triggers sup-
plied by the environment. But accuracy and speed do not go together. Even
with its efficient treelet decoding procedure, the feasibility restriction to serial
parsing entails that some unambiguous parametric information in input sen-
tences is masked by ambiguities and is not accessible to the learning routine.
Hence in the presence of parametric ambiguity, D-STL learning is accurate but
very slow. It is especially slow at the beginning; ambiguity hits early learning
hardest.

Is this compatible with the facts of human language learning? To the extent
that children make syntactic mistakes, these would have to be attributed to
faulty input, lack of lexical knowledge, semantic confusions, processing slips,
etc. But this is not unrealistic. It has repeatedly been noted that children
make remarkably few syntactic (as opposed to lexical or morphological) errors.
This speaks in favor of conservative learning and against learning algorithms
which engage in random guessing. (See, however, Bowerman 1990 on some
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early word order errors, e.g. Comes feet under here.) The slow rate of parameter
setting is a legitimate concern, but is not necessarily fatal. After all, if a child
has just 20 parameters to set by the age of 5, learning need go no faster than
one parameter every couple of months. Even if there are 50 parameters, or 100,
the time for each one is still measured in weeks, not days or minutes. This con-
trasts with the rate of lexical learning, which has been estimated at one word
every two waking hours during the pre-school years (Pinker 1994, citing work
by Nagy and Anderson).

On the other hand, the extreme effect of ambiguity on the setting of the
first few parameters does seem hard to reconcile with human performance.
The prediction is that – at least relative to a constant flow of information from
the environment – the earliest-set parameters are set orders of magnitude
more slowly than later parameters. No empirical surveys have been done to
establish how many parameters children have set correctly at what ages, and
whether this accelerates. Studies of particular syntactic phenomena do occa-
sionally reveal a lag between the time at which relevant evidence appears to
be available to children and the time at which they have demonstrably mastered
the facts. These cases are often attributed to late maturation of some UG con-
tribution to the construction (e.g. the maturation of A-chains, Borer and Wexler
1987; see also Wexler 1999).

Perhaps such cases should be re-examined from the perspective of con-
servative learning. It seems unlikely, but might these laggardly phenomena be
particularly susceptible to masking by other ambiguities in the same sentence?
More commonly, acquisition research reveals that children know more of the
syntax of their language than they normally make use of. Constructions can be
elicited which occur rarely if at all in the child’s spontaneous production at
that stage (e.g. a relative clause in a purpose clause at 3 years 5 months: Jabba,
please come over to point to the one that’s asleep; wh-extraction from a subordinate
clause at 3 years 11 months: Squeaky, what do you think that is?; see Crain et al.
1987, Crain and Thornton 1991). And comprehension experiments with babies
not yet producing any word combinations confirm that they already know
some basic facts of their target language such as the surface order of subject,
object, and verb (Hirsh-Pasek and Golinkoff 1991). Tentatively, then, I con-
clude that children exhibit no great delay in getting the early parameters set.
(See also the Very Early Parameter Setting generalization of Wexler 1998.)

There is an interesting possible explanation for this which might save the
D-STL. Perhaps natural languages are particularly kind to the conservative
strategy for parameter setting, allowing it to be successful on sentences typical
of children’s early input even though for other sentences it would indeed be
slow. This could reconcile the theoretical predictions of conservativism with
the achievements of human learners. We know what linguistic properties would
be of assistance. The beginnings of sentences are the most important: an un-
resolved ambiguity late in a sentence will mask less than if it were to occur
at the beginning. Also, for equivalent overall amounts of ambiguity, it would
be better for a sentence to have more ambiguity points with fewer treelet
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competitors at each, rather than fewer ambiguities with more competitors, since
then the setting of one or two parameters has a good chance of eliminating
an ambiguity entirely, thereby opening up later parts of sentences for further
learning. Suppose these helpful properties were characteristic of relatively
simple sentences such as infants comprehend and on which they presumably
rely for learning, sentences such as Where’s the kitty? or Mommy will read you
a story. This could break the early learning bottleneck despite massive para-
metric ambiguity in the language as a whole. To the contrary, however, a look
at natural languages makes it all too clear that early learners are faced with
multiple ambiguities starting from the very first word of a sentence (see
section 6). The natural language domain does not help out the D-STL; it makes
deterministic early learning as difficult as it possibly could be.

5.3 With ambiguity detection: no waiting
The STL has a choice of strategies for responding to input ambiguity: it can
exploit its ambiguity detection ability or not do so. If it does not, it is in the
same boat as the TLA and other grammar guessing systems that are unable to
detect ambiguity because they try out only one grammar at a time. Disregard-
ing ambiguity is the approach of the non-deterministic variant of the STL, also
known, for reasons that will be clear, as the Parse Naturally STL (PN-STL;
Fodor 1998c).

Its parser is still a serial parser, and it does exactly what a normal (adult)
human parser would normally do: it computes its favorite analysis of an input
word string, based on Minimal Attachment and other innate preference prin-
ciples. (Minimal Attachment says that an input word should be attached into
the parse tree using the fewest possible new nodes; Fodor 1998b defends the
innateness of both the parsing mechanism and its preferences.) Unlike the
deterministic STL, it does not record ambiguity points. The only difference
from adult sentence processing is that at a point of parse failure, the learner
has access to the innate lexicon of parametric treelets. These are temporarily
folded into the grammar acquired so far, as described above, so the parser’s
use of them is governed by Minimal Attachment and so forth, just as for other
elements of the grammar. Having computed its preferred analysis, the parser
reports it to the learning component without comment on ambiguity. The
learner treats the parse tree as if it were correct, and adopts any new para-
metric treelets it contains. If the analysis is correct, all is well. But if a sentence
is globally parametrically ambiguous, the parser’s preferred analysis may dif-
fer from the target analysis, so the parameter values adopted may be incorrect.
The higher the net ambiguity rate the greater the chance that this is so.

In short: the PN-STL lets the parsing strategies make decisions about how
to resolve parametric ambiguities, and since these decisions cannot always
be right, the PN-STL makes mistakes in setting parameters. For instance, the
Minimal Chain Principle (De Vincenzi 1991) is another important parsing
principle, which favors non-movement analyses over movement analyses.
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This parsing preference will cause the learner to adopt −V2 rather than +V2
where there is a choice. (Gibson and Wexler 1994 also propose that learners
prefer non-movement analyses, though not for parsing reasons.) This is
correct for SVO strings in English but not in German. For German the V2
parameter will need resetting when a sentence is encountered for which no
−V2 analysis is possible. The acquisition of +V2 in German is still not well
understood, but there are some reasons for believing that the verb does not
move to the C projection until Case morphology is acquired and the evid-
ence of Accusative-initial sentences outweighs the avoidance of movement
(Weissenborn 1990).

It seemed self-evident in the early days of working with the STL that its
ability to more or less effortlessly detect and avoid ambiguity was a great asset
not to be wasted. The PN-STL does waste this gift, but it has some good fea-
tures to recommend it nonetheless. The mistakes it makes are not random or
stupid ones. Its disambiguation choices are systematic, so they help to explain
the uniformity of language acquisition by all normal children. They reflect the
human parser’s natural tendencies, which may increase the chance that the
selected analysis is the one the speaker intended. The human parser is appar-
ently a least-effort device, preferring to build structures that are as simple as
possible, so even if the parser’s analysis is wrong, at least the processing load
is not excessive. Error correction is needed but is relatively fast given that the
PN-STL does not suffer from decoding delays. Also, the PN-STL is well able to
benefit from useful-but-not-quite-reliable hints about sentence structure from
prosody and semantics just as adult parsing does (within bounds of modularity).
These non-syntactic sources of information cannot conveniently be used by an
ABS system like the TLA, which first picks a new grammar to try and only
then inspects the properties of the input sentence. Nor can they be exploited
by a deterministic system that cannot afford to take chances on partial cues.
And a system that uses prosody to set some syntactic parameters directly could
employ only a small proportion of the ubiquitous structure-sensitive prosodic
patterns in natural language sentences. To extract the most benefit from pro-
sodic and semantic cues, they should be used by a non-deterministic learner
not insisting on total accuracy, where they can affect parameter setting indir-
ectly by contributing to selection of the most likely tree structure for novel
sentence constructions. Above all, the Parse Naturally system brings relief for
early learners. Parametric questions are answered (albeit tentatively) as soon
as they arise, so learners rapidly gain a substantial working grammar which
can be used for comprehension and production until such time as the target
parameter settings are stabilized.

These merits must be weighed against two disadvantages that beset all
non-deterministic learning. When errors occur they can create misleading con-
texts for setting other parameters, thus generating even more errors (Clark
1988). This tendency is presumably exacerbated by high levels of parametric
ambiguity. Also, an error-prone non-deterministic learner can never afford to
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dismiss the parameter values that are the competing partners of the ones it has
adopted, because it may need to revert to them later. Eliminating disconfirmed
values was the source of the progressive speed-up in learning rate over time
discussed in section 3.2. It appears that the PN-STL sacrifices this acceleration
in return for the speed it gains at the start. The effect is to flatten out the
learning curve across the whole course of learning, evening up the workload –
perhaps not a bad trade-off. And arguably, the PN-STL does not suffer too
greatly in efficiency by its retention of unpromising-looking parameter values
just in case they are needed later. The PN-STL is relatively unaffected by the
number of grammars in the pool of candidates, because it considers only the
most highly ranked one. Unlike other models, it selects among just those that
can parse the current sentence, and attends only to the parser’s preferred
candidate at each choice point. Furthermore, the PN-STL can be given the
capability of keeping a running tab on the success rates of all the UG treelets
depending on how often they come to the rescue of a blocked parse, as sug-
gested in section 5.1 for the cue based learner. By this means, even though it
never really eliminates any treelets, the PN-STL would gain much the same
advantage as if it definitively adopted some and dismissed others. Its strategy
would be to give priority to the most successful treelets. The more these are
used the stronger they will get, so they will streak further ahead of the others
and will be, in effect, the only ones in play – except if input is subsequently
encountered which offers no choice but to boost a previously low-ranked
treelet. Thus, rapid narrowing of the field of likely candidates may be compat-
ible with revision capability in case of unexpected turns in the data.

An empirical prediction of this model is that the phenomena in each lan-
guage that are the hardest to learn will include those for which there exists
an incorrect parametric alternative which the parsing system strongly prefers.
This is not the same as claiming that all structurally complex constructions
are challenging for learners. Difficulty is predicted just where the evidential
support from the learner’s input for the correct treelet would have to fight
against the parser’s disinclination on-line to assign the correct structural analysis
rather than some other. Studies of adult sentence processing show that the
human parsing mechanism does sometimes fail to compute a correct analysis
that is highly dispreferred. To the extent that parsing preferences are innate
and already active in children, we should observe slow spots in learning cor-
related with the known dislikes of the human parser, as in the case of the
Minimal Chain preference mentioned above. More work is needed to generate
exact predictions for particular languages. There is also much work to be done
in establishing the error curves for PN-STL learning under various conditions
of parametric ambiguity, expression rates, and so forth, to see how accuracy
varies over the course of learning. For modeling the complex dynamics of
error correction systems, mathematical methods are less practical, so computer
simulation will be needed to evaluate the PN-STL and compare it with the
performance of the deterministic STL.
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5.4 Assessment
There is a family of possible STL learners, all using the innate lexicon of
treelets to decode the parametric information in input sentences. Here I have
utilized the general STL format to compare two different varieties incorp-
orating some design choices proposed in other models. The purpose of the
comparison is to gain insight into how the human language learning mecha-
nism is designed, by assessing the strengths and weakness of the models, and
comparing their performance with that of human learners. The D-STL emphas-
izes the accuracy aimed for in early switch-setting models. The PN-STL takes
chances and relearns where necessary, like the TLA. They have in common
their efficient decoding procedure, and the STL emphasis on sentence struc-
ture as the mediator between input word strings and grammars; parameters
are concerned with aspects of that structure. The theoretical linguistic concept
of a structural cue or trigger for each parameter value is preserved and is
integrated into a psycholinguistic account of sentence parsing which spans
adults and children, and which takes on much of the burden of the learning
process.

There are more STL varieties imaginable than these two, which contrast
maximally in their handling of ambiguity. A possible intermediate system
would flag ambiguity points like the D-STL, but in case of ambiguity would
set parameters anyway like the PN-STL. This would give the initial fast progress
of the Parse Naturally approach, but the learner’s confidence in a treelet could
be scaled to whether it was adopted on the basis of ambiguous or unambigu-
ous evidence. Another design that might recommend itself is the D-STL
equipped with default parameter values for the child to use in language
production and comprehension while waiting for decisive evidence of target
values. Defaults, however, must be employed with great caution in a deter-
ministic system, since they can engender errors (even the otherwise beneficial
Subset Principle default; see Fodor 1998c). Perhaps other STL variants will
emerge that are superior to these.

Formal evaluation of these models has barely begun. We know too little still
about their performance characteristics for there to be a final judgment yet.
The discussion so far has suggested the following rough and ready evalu-
ation. The deterministic approach which became a practical possibility with
the advent of STL decoding is the only way to achieve fully accurate para-
meter setting. Computationally this accuracy is essentially cost-free, but in
terms of learning rate it is not, especially at early stages. The PN-STL comes
closer to delivering constant rate parameter setting across the timespan of
learning, despite the enormous range of uncertainty levels that children face
at different stages. But the parameter setting errors of the PN-STL seem not to
do justice to real children, who tend with few exceptions not to use syntactic
constructions they do not know how to use correctly. Also, at present it is
an open question whether the errors of the PN-STL, like those of Gibson and
Wexler’s TLA, may lead it into territory from which it may never retreat.
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How can we advance on these approximate assessments? Computational
linguistic research can continue to spell out the efficiency characteristics and
convergence rates of each approach. It falls to psycholinguistics to determine
which accords best with empirical data on actual parameter setting progress
by children. More extensive experimental data on children’s sentence process-
ing may also be informative. One other possible source of information is the
linguistic facts themselves. By comparing the properties of natural languages
with how they might have been in a make-believe world better designed for
learners, we may get a sharper estimate of how much of a challenge acquisi-
tion really is, and hence how robust the human learning mechanism must be.
I try out this line of thought in section 6.

6 Patterns of Parametric Ambiguity in
Natural Language

Is it possible to hold on to the ideal picture of rapid error free parameter
setting for natural language? So far we have seen that total accuracy is prob-
ably incompatible with speed. Moreover, it appears that natural languages are
designed to magnify this incompatibility. The distribution of parametric ambi-
guity in natural language is far more damaging for learners than it need be.
It is possible, though still unclear at present, that developments in syntactic
theory might ameliorate this situation. If not, deterministic learning is prob-
ably not practicable; some guesswork must be resorted to to get the job done.

6.1 String-to-structure alignment
It would have been more convenient for children if natural language parameters
were all concerned with surface facts, and if every parameter value expressed
by a sentence were expressed independently of the others and unambiguously.
(Of course, it would be more convenient if there were no parameters at all.
See Pinker and Bloom 1990 and commentaries for speculation on why human
evolution did not go further and provide us with a fully formed innately
specified language.) Instead, the way of natural language is to let P&P values
and lexical items intermingle in a derivation so that at the surface there is
no separable piece of the word string attributable to each piece of the grammar
involved in the derivation. The relation between word strings and their para-
metric generators is thus opaque at best. And because different derivations
may converge on the same word string it is also often ambiguous. A large part
of the problem is that sentences have abstract structures far richer than the
lexical items that realize them audibly: the non-terminal-to-terminal node
ratio is high. This is particularly so for syntactic analyses since Pollock (1989),
in which what were once represented as features of lexical projections now
appear as functional heads with projections of their own. As Bertolo et al.
(1997) have pointed out, this can create ambiguities concerning the position of
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a verb among the stack of inflectional heads representing tense, agreement,
aspect, and so forth. A′-movement and its traces also contribute to the dispro-
portion of inaudible to audible elements.

Neither non-terminal nodes nor empty categories would be a problem for
learners if everything about them were innate. In fact, although their existence
and distribution are regulated in part by innate principles, they are also to
some extent parameterized. Even if the array of functional heads in the ex-
tended verbal projection is universal and totally predictable for learners with
access to UG (e.g. Cinque 1999), it is still necessary for a learner to discover
how that structure aligns with the words of target language sentences. For
instance, in The mouse squeaks is squeaks in V or AGRo or T or AGRs or C? Is the
mouse in the Specifier of V or of T or AGRs or C? Bertolo et al. contemplate a
language such that no surface facts fully determine the answers to these ques-
tions. In that case a seriously conservative learner such as the D-STL would
wait forever for unambiguous input to set the verb movement parameters.
The learner could never parse verbs at all for lack of knowing where they
should be parked in relation to the innately prescribed non-terminal nodes in
the parse tree. Even in a language where the answers are determinate, it may
take quite a lot of evidence from input sentences to establish them; and a
conservative learner can build no parse trees until that evidence has been
encountered. Note that this is a situation in which neither prosodic nor semantic
cues are of any assistance. Verb movement is a formal operation which has no
effect on phonological phrasing or meaning.

The Minimalist Program suggests that morphological cues might be useful,
since overt movement is driven by strong features on functional heads and
there is some tendency for strong features to be overtly realized morphologic-
ally. For example, rich inflection is often cited as a predisposing factor for
verb movement to I. If the correlation between overt morphological realization
and strong syntactic features were exact, learners would be able to read off
from the verb’s morphology (once acquired) not only that the verb must have
moved, but exactly which functional head it moved to within the extended
verbal projection. Unfortunately it appears that this relationship is not reliable
enough for learners to trust. The Minimalism based learning system of Wu
(1994) treats morphological strength and syntactic strength as independent
parameters (though see Pollock 1997 for a new way of relating them). The only
evidence that learners can rely on, it seems, is the positional markers that
linguists rely on in motivating analyses with split Infl: the adverbs which may
intervene among the verbal head positions, an overtly realized negative head,
and so forth. For example, Pollock (1989) used the contrast between John often
kisses Mary/*John kisses often Mary and *Jean souvent embrasse Marie/Jean embrasse
souvent Marie to argue that the finite verb moves to a higher functional head in
French than in English. Adverbs and negation are audible items, and they can
fix the locations of movable entities such as the verb and its arguments, within
the (inaudible) extended verbal projection.
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The problem with these indicators of string-to-structure alignment is that
adverbs and negation are optional in sentences. So learners will receive only
occasional doses of positional information. Many of the sentences children
hear are not structurally disambiguated by such elements. Lack of positional
markers is especially true of very simple sentences like Mickey squeaks, which
presumably constitute the intake (the processible input) of beginning learners,
who are most in need of disambiguation assistance. To make things worse, the
unresolved ambiguities of verb and argument position that young children are
exposed to occur often at the very beginnings of sentences (e.g. the structural
position of an initial noun is multiply indeterminate). This, we have noted, is
the worst possible location for an ambiguity because it will block the acquisi-
tion of any other parametric facts the sentence may contain (section 5.2). Fur-
thermore, these ambiguities are systematic; they are not a matter of accidental
overlap of word strings, which a child might be unlucky enough to encounter
once but which would not recur. It is not just Mickey squeaks which is structur-
ally indeterminate for learners, but all sentences that contain just a verb with
some complements.

Thus, natural language design is extremely cruel to children: (i) natural
languages have multiple positions capable of hosting the same lexical category
(e.g. verb); (ii) children are not free to choose which position it should be in
since there is a right and wrong answer for each language; yet (iii) UG does
little to ensure that the target position is recognizable in basic sentences in
which the item appears. This is especially punishing for a conservative learn-
ing strategy which demands certainty before it takes action, and for which one
ambiguity can block the learning of other facts. As the extreme case of the
paralysis noted by Bertolo et al. (1997), a truly conservative learner might have
no grammar at all for verb placement until the verb has been observed in
relation to every one of the positional landmarks that UG provides. Cinque
(1999) lists 32 classes of adverb that would need to be observed, as well as
multiple positions for negation.

In summary: natural languages abound in ambiguities of the worst kind for
a deterministic learner: systematic ambiguities which occur early in sentences
and early in a learner’s career, and which are highly frequent but resolved
infrequently. An artificial domain of languages in which simple sentences facilit-
ate parameter setting can easily be created. But natural language design seems
to do all it can to exacerbate the early learning problem. These observations
appear to put the precision-loving deterministic STL at a disadvantage relative
to the happy-go-lucky PN-STL. The former backs away from the ambiguities
the primary linguistic data throw at it. The latter muddles on through until
some fixed points of information finally begin to arrive; and if some never do,
it has a grammar anyway.

However, the distribution of parametric ambiguity in natural languages
depends not only on the language facts but also on their proper theoretical
interpretation. Before we abandon forever the goal of high-precision triggering
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of syntactic parameters, it is appropriate to consider what difference it would
make to learning if the language facts were differently analyzed.

6.2 The problem of short sentences
The problems circle around the properties of short sentences. Young children
produce short sentences, and they show signs of comprehending short sen-
tences better than long ones, by and large, so we assume that they learn from
short sentences. Chomsky (1988: 70) wrote: “Notice that the value of the
[headedness] parameter is easily learned from short simple sentences. To set
the value of the parameter for Spanish, for example, it suffices to observe
three-word sentences such as (3),” where (3) is Juan habla inglés “Juan speaks
English.” But this is wishful thinking. An SVO sentence does not suffice to
establish head–complement order. Consider Johann spricht Englisch.

Though they may be easier for production and comprehension, short sen-
tences are not necessarily simpler for acquisition than long ones are. All depends
on what they leave out. A short sentence simplifies early learning by not pre-
senting embedded questions or adverbial clauses or long distance extraction.
The parameters peculiar to those constructions do not have to be set yet, and
they do not create ambiguities that get in the way of setting other parameters.
But a short sentence complicates learning if it leaves out the items that resolve
parametric ambiguities or show the scaffolding into which the overt items fit.
Ideally, the earliest sentences children attend to would be composed of items
which are not themselves parameterized, and which will help to clarify the
parameter settings needed for other items to come. Here, as we have seen,
natural languages win no design prizes. (I am indebted to Anne Christophe
and Norbert Hornstein, personal communication, for insisting on this point.)

The shortness of sentences affects different parameters to different degrees.
For obvious reasons it is easier for a short sentence to reveal the positive value
of the null subject parameter than the positive value of the V2 parameter.
Though the particularities of different parameters cannot really be set aside,
some general effects of sentence length can still be discerned. The shortness of
a sentence imposes an inherent limit on how informative it can be for learners.
Parametric information is carried by the overt items in a sentence: the categor-
ies of the words and the discernible relationships among them such as preced-
ence or agreement (and also, sometimes, by what is missing). If a sentence
needs more parameter values for its derivation than can be signaled by the
words it contains, parametric ambiguity results. So short sentences are liable
to overflow their parametric banks, so to speak, unless they are derived using
only a small proportion of the full set of parameter values that generates the
whole language. But this condition is hard to satisfy if a sentence consisting of
just one verb has a structure with the full array of inflectional heads, all need-
ing to be specified for weak or strong features controlling movement.

Conclusion: It could be that the best way to facilitate early learning
would be to ensure that UG permits short sentences to have simple, relatively
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parameter-free derivations. Ambiguity overload can be kept at bay if parametric
questions do not pile up unanswered, waiting until more “advanced” input is
heard and absorbed.

6.3 How much help from UG?
We have observed that even if large chunks of language structure are innately
programmed into human brains, a learner may be quite unable to tell how that
structure should align with the words heard. This is parallel to the situation
for syntactic categories: the categories Noun and Verb are surely innate but
children still must learn which of the words they hear belong to which cat-
egories, and that is not a trivial task. The idea that innately prescribed struc-
ture is cost-free for language learners is common in linguistic research and it
seems eminently plausible. It is also welcome, because it means there is no
reason not to assume the innateness of many aspects of language structure. A
structural configuration needed for one language can be assumed to occur,
inaudibly, in other languages too, as long as there is no specific evidence to the
contrary. This brings linguistic theory closer to being able to claim that all
natural languages have essentially the same derivational structures – except
only that not all the same parts of the universal structure are spelled out in
every language.

Unfortunately, the argument that what is innate is ipso facto effortless for
learners is not valid. It is clear now that even if the structural scaffolding of
sentences is everywhere fixed and the same, any particular sentence may be
highly ambiguous with respect to how its words are attached to that scaffold-
ing. For UG to be truly helpful, it should supply innate sentence structures
and fix their relation to surface word strings – or at least constrain that relation
tightly enough that learners can rapidly fill in the rest. As long as there is
substantial crosslinguistic variation with respect to how innately defined struc-
ture is overtly lexicalized, there will be ambiguities of string-to-structure align-
ment that may be very onerous for learners to resolve. Every bit of universal
structure, even if it is not “used” in some language, can make that language
harder to learn.

But UG can assist learners in two other ways. First and most obviously:
whatever the facts are that adults know, a learner has a lighter time of it the
more of them it knows innately. If simple sentences have rich structure, better
that it should be innate than not. More interestingly: UG principles control
how much invisible structure learners have to assign to word strings. Thereby
they control the balance between parametric ambiguity, which is troublesome,
and parametric irrelevance, which can be helpful as a way of postponing
difficult questions until the input is rich enough to provide the answers. The
question, then, is whether UG could permit simple sentences to have para-
metrically simple and unambiguous derivations. There is more than one way
this could be achieved. Which if any is correct is a linguistic issue. I sketch two
broad approaches here.
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i Adopt a theory of UG which matches the structural ambiguity of overt
elements to their time of occurrence in learners’ intake: the earliest items
should be the most determinate. This would reduce the string-to-structure
alignment problem by improving the balance in early language samples
between the elements that need to be structurally located and the elements
that can help to locate them. In earlier forms of transformational grammar
before the split-Infl hypothesis, and in other linguistic frameworks such
as LFG or HPSG, the verb is the fixed element in a clause, and adjuncts
are positioned relative to it rather than vice versa. For target grammars of
this kind, beginning learners could build correct trees for subjects and
verbs right away, based on Mickey squeaks and other simple sentences in
their conversational milieu. There would be minimal structural ambiguity
to contend with at the outset, and optional elements could be added in
later on.

ii Retaining the split-Infl concept, adopt a theory which entails that each
sentence has only as much structure (in Infl and elsewhere) as is needed to
derive its own properties (e.g. surface word order). (See, for example, Giorgi
and Pianesi 1997. For an important form of argument against this idea,
see Cinque 1999: ch. 6.) There would be no parametric ambiguity due to
ambiguities of hidden structure (though “genuine” parametric ambiguities
would still occur, such as between exceptional case marking and structural
case assignment in infinitives, in the example noted by Clark 1988). Thus,
a child’s simplest structural hypothesis about an input sentence could
be correct for that sentence even if additional parameters must be set to
derive more complex sentences later.

Note that this goes beyond the suggestion that each language employs
(for all its sentences) only as many functional projections as are needed to
acount for the phenomena of that language (e.g. Fukui 1986, Bobaljik and
Thráinsson 1998; see also discussion in Haegeman 1997 and other refer-
ences there). It also differs from the proposal of Radford (1990) that func-
tional categories are omitted from the sentence structures computed by
early learners because the ability to represent them does not mature until
about 2 years. It might be combined with the assumption that functional
heads can be featurally underspecified, so that a learner could acknowledge
that some projection must be present to provide a landing site for move-
ment, without yet knowing what the content of the head is. This would
seem promising from a learning point of view, since it allows that a child
could always build just the minimal warranted structure, not committing
to any more of its details than are certain.

Other proposals in a similar spirit involve defaults. Assuming that the
maximal structure is present in every sentence derivation, there might be
movement defaults which keep the verb and its arguments low in the struc-
ture until specific evidence of overt movement to a higher position is encoun-
tered: features controlling movement would be weak until proven strong. Or,
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assuming that languages differ with respect to the inventory of functional
projections they employ, it would be natural for defaults to exclude any
particular functional head until the input proves it necessary for reasons of
morphology or movement. These alternatives may be more palatable theor-
etically than varying the richness of structure sentence by sentence, but they
will demand some departure from full determinism of the learning procedure,
since default parameter values are technically “errors” in languages which
have the non-default value, so other learning decisions made on the basis of
them cannot be guaranteed correct.

Whichever approach turns out to be right, it is clear that the assessment of
current learning models is very much in the hands of theoretical linguistics.
Linguists proposing syntactic parameters have often specified input triggers
which could set those parameters. This is important. Unfortunately, as learn-
ing theory has begun to model the time course of parameter setting, we find
that it has become more difficult to propose a realistic collection of triggers
that will allow all parameters to be set accurately in a reasonable amount of
time. For learnability theory there is therefore a great deal hanging on the
outcome of current linguistic research on the richness of sentence structures,
and particularly on recent reconsiderations of the linguistic evidence for and
against the hypothesis that all sentences in all languages have identical hier-
archies of functional projections providing potential landing sites for para-
meterized movement.

NOTE
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