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A Computational Logic for Applicative
Common LISP

M AT T K AU F M A N N A N D J. S T RO T H E R M O O R E

1 Introduction

Perhaps one of the most ambitious goals for mathematical logic was put forth by one
of its earliest advocates.

If we had some exact language . . . or at least a kind of truly philosophic writing, in 
which the ideas were reduced to a kind of alphabet of human thought, then all that follows
rationally from what is given could be found by a kind of calculus, just as arithmetical or
geometrical problems are solved. (Leibniz, 1646–1716)

Mathematical logic casts too harsh a light to be appropriate for the ‘rationalization’ of
many human endeavors. Can one axiomatize good and evil, or even the aerodynamics
of the African sparrow, so that all that follows by mathematical proof is truly 
believable?

But Leibniz’ dream was aided immeasurably by the invention of the digital computer
because the computer not only provided a platform on which to build a reasoning
engine but provided a source of problems to tackle with it.

Instead of debugging a program, one should prove that it meets its specifications, and 
this proof should be checked by a computer program. (John McCarthy, “A Basis for a
Mathematical Theory of Computation,” 1961)

Computing systems, such as microprocessors, switches, file servers, compilers, encryp-
tion devices, control programs, financial software, etc., are naturally described in the
precise language of mathematical logic. If the logical ‘model’ of the system accurately
describes what is built, then the logical properties of the model accurately predict the
behavior of the artifact.

But is proving theorems about computing systems practical? Is it cost effective? Here
are two more quotations that shed some light on those questions.

An elusive circuitry error is causing a chip used in millions of computers to generate 
inaccurate results. (NY Times, “Circuit Flaw Causes Pentium Chip to Miscalculate, Intel
Admits,” November 11, 1994)



Intel Corp. last week took a $475 million write-off to cover costs associated with the divide
bug in the Pentium microprocessor’s floating-point unit. (EE Times, January 23, 1995)

It is possible to prove a lot of theorems for $475 million.
‘ACL2’ stands for ‘A Computational Logic for Applicative Common Lisp.’ It is the name

of a programming language, a first-order mathematical logic based on recursive func-
tions, and a mechanical theorem prover for that logic. ACL2 is designed for use in rea-
soning about computing systems, both those implemented in hardware and those
implemented in software.

The human user of ACL2 can formalize or model a computing system by defining
functions that simulate the operation of the system. Since ACL2 is a programming lan-
guage, such an operational model is just a computer program that can be run on con-
crete data to produce concrete results. With this program the user might test the
behavior of the system on some finite number of example inputs. Since ACL2 is also a
mathematical logic, the user might prove theorems about the model, possibly estab-
lishing properties that hold for an infinite number of inputs. Finally, using ACL2’s inter-
active theorem proving program, the user might check these proofs mechanically,
thereby eliminating the all-too-frequent errors that crop up in ‘hand proofs.’

This is not just a mathematical fantasy. For example, ACL2 was used to prove the
correctness of the circuitry implementing the elementary floating point operations on
the AMD AthlonTM processor1 with ACL2. Most major chip manufacturers have per-
sonnel devoted to proving theorems or otherwise formally checking properties of their
designs.

In this article we describe ACL2 briefly, present a simple modeling problem and its
solution in ACL2, and describe some of ACL2’s recent applications.

We assume the reader has had a little experience with computing and programming.
Also helpful would be an introductory course in first order predicate calculus.

2 The ACL2 System

Here we briefly discuss ACL2 as a programming language, a logic, and a mechanical
theorem prover or proof checker. The ACL2 system is available under the GNU General
Public License and without fee from its home page, http://www.-cs.
utexas.edu/users/moore/ac12. Installation instructions and documentation
are included. We discuss how to learn to use ACL2 in Section 5.

ACL2 is just one of several mechanical theorem proving programs used for hard-
ware and software verification. Among the others are HOL (Gordon and Melham
1993), Otter (McCune 1994), and PVS (Owre et al. 1992). See the Related Web Sites link
under the Books and Papers link of the ACL2 home page for lists of dozens of other
theorem provers. Theorem provers are still research vehicles, even though some, like
the ones mentioned above, are being used by researchers in industry. Each is designed
to explore a different part of the theorem proving problem. ACL2 is first order with con-
siderable automation, with heuristics tailored to recursive definitions and induction.
Otter supports first-order predicate calculus, with full support for quantification. HOL
and PVS both support higher-order logics. Of major concern to the developers of HOL
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was how to build a theorem prover that was both user-extensible and sound. The PVS
and ACL2 developers were primarily concerned with building tools that people with-
out research backgrounds in automated reasoning could use off the shelf to prove 
theorems about computing systems. The Otter team focused on finding automatic proof
techniques so that Otter, rather than its human users, gets full credit for its proofs. We
should emphasize, however, that all of these tools address all of these issues to varying
degrees. For example, ACL2 addresses user extensibility, and Otter requires the user to
interact by setting parameters.

The programming language

As a programming language, ACL2 is a variant of Common Lisp (Steele 1990). ‘Lisp,’
which stands for ‘list processing,’ is commonly used for artificial intelligence applica-
tions because it facilitates symbol manipulation. Lisp was invented by John McCarthy
in the late 1950s as part of his visionary project towards a mechanized theory of com-
putation (McCarthy 1960, 1962, 1963).

ACL2 is a functional or applicative version of Lisp, meaning that ACL2 programs are
mathematical functions of their arguments. They do not have side-effects and are not
sensitive to implicit ‘global variables’ or implicit ‘state.’

ACL2 terms are written in prefix notation. A term is a variable, a constant, or the
application of a function symbol, f, of k arguments to k terms, a1, . . . , ak, written (f a1

. . . ak). Here is how one might write a2 + ab in ACL2: (+ (expt a 2) (* a b)).
The ACL2 runtime system provides facilities for calculating the values of terms under
assignments of values to their free variables. For example, if a has the value 3 and b
has the value 5, then the term above is calculated to have the value 24.

In addition to the numbers (integers, rationals, and complex numbers with rational
coefficients) ACL2 supports several other data types. These include strings (such as
‘Hello World’), symbols (such as LOAD and X), and ordered pairs. Primitive functions
are provided for manipulating each type of data. For example, the function cons takes
two arguments and returns an ordered pair containing them. The functions car and
cdr take one argument, which is normally an ordered pair, and return the first and
second components, respectively. The function consp takes one argument and returns
the constant T (‘true’) if the argument is an ordered pair and NIL (‘false’) otherwise.

Ordered pairs are written in parenthesized ‘dot notation.’ For example, the pair tra-
ditionally written as ·3,NILÒ is written in ACL2 as (3 . NIL).

Ordered pairs can be used to encode a wide variety of abstractions. One such abstrac-
tion is linear lists, which are so common that the notation for printing ordered pairs 
in ACL2 (and Lisp) is oriented towards it. The constant NIL may be written simply as
(), and thus plays double duty; it is used both as the false truth-value and as the 
empty list. The ordered pair (3 . NIL) may be written simply as (3). The ordered
pair (2 . (3 . NIL)) may be written (2 3), the ordered pair (1 . (2 . 
(3 . NIL))) may be written (1 2 3), etc.

It is convenient to be able to write list constants inside terms. What is a term 
that evaluates to (i.e. whose meaning is) the list (1 2 3)? One such term is (cons
1 (cons 2 (cons 3 NIL))). But another one is ’(1 2 3). The ‘quote mark’
can be used to write a term that evaluates to a given constant.

MATT KAUFMANN AND J. STROTHER MOORE

726



Lists are frequently used to represent still other abstractions. For example, the list 
(1 2 3) may be thought of as the stack obtained by pushing 1 onto the stack (2 3).
The following function definitions make these conventions easier to remember. (Actually,
the symbols push and pop are defined in ACL2 and may not be redefined; to make
these definitions we must actually operate in a symbol package other than the default
one, but we do not discuss that here.)

(defun push (item stack) cons item stack))
(defun top (stack) (car stack))
(defun pop (stack) (cdr stack))

The first defun above, for example, defines push to be a function symbol of two argu-
ments, item and stack, whose value is obtained by evaluating the term (cons
item stack). Thus, (push 1, ’(2 3)) is the stack (1 2 3). The top of that
stack is 1 and the pop is (2 3).

Here is another common use of lists. Consider the list of two ordered pairs ((A . 7)
(B . 4)). Call this constant a. The car of a is (A . 7). The cdr of a is 
((B . 4)). The car of the cdr of a is (B . 4). Lists such as a are thought of as
tables that map keys (A and B, in this case) to values (7 and 4, respectively). Such lists are
called association lists or alists or assignments. The car of the car of a nonempty alist is
the first key assigned in the alist; the cdr of the car is the value assigned to that key.
The cdr of a nonempty alist is another alist that assigns the rest of the symbols.

Here is a function that looks up the value of a symbol in an alist. This function is
recursive.

(defun lookup (sym alist)
(if (consp alist)
(if (equal sym (car (car alist)))

(cdr (car alist))
(lookup sym (cdr alist)))

0))

The definition above may be paraphrased as: If alist is a cons pair, then if sym is
the first key assigned, return its value; otherwise lookup sym in the rest of alist.
If alist is not a cons pair, return 0.

After this definition, (lookup ’B ’a) evaluates to 4. But (lookup ’C ’a)
evaluates to 0.

ACL2 supports a variety of syntactic extensions. Another way to define lookup is
shown below.

(defun lookup (sym alist)
(cond
((endp alist) 0)
((equal sym (car (car alist)))
(cdr (car alist)))
(t (lookup sym (cdr alist)))))
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The cond special form is just a nest of ifs. (Endp alist) is equivalent to (not
(consp alist)).

For a more thorough introduction to ACL2 as a programming language see
Kaufman et al. (2000b). The link labeled Hyper-Card on the ACL2 home page contains
a quick introduction to Lisp and a reference card to the programming language. The
User’s Manual link contains several megabytes of hypertext documentation.

The Logic

ACL2 is formalized as a first-order mathematical logic. Any standard formulation of
first-order logic will serve our purposes. See also Kaufmann and Moore (to appear).
Axioms describe the primitive functions. For example, here are several of the axioms.
(Actually, (consp NIL) = NIL is not an axiom but an easily proved theorem.)

Axioms
x = NIL Æ (if x y z) = z.
x π NIL Æ (if x y z) = y.
(consp NIL) = NIL
(consp (cons x y)) = t
(car (cons x y)) = x
(cdr (cons x y)) = y

Using the natural numbers and ordered pairs, a representation of the ordinals up to e0

is introduced. For example, the ordinal w2 + w ¥ 4 + 3 is represented in ACL2 by the list
(2 1 1 1 1 . 3). An axiom defines a relation (a function returning T or NIL),
named e0-ord-<, corresponding to the well-founded ordering relation on these 
ordinals. Another axiom introduces the predicate, e0-ordinalp, which recognizes
the ACL2 ordinals.

The principle of mathematical induction, in ACL2, is then stated as a rule of infer-
ence that allows induction up to e0. To prove a conjecture by induction one must iden-
tify some ordinal-valued measure function. The induction principle permits one to
assume inductive instances of the conjecture being proved, provided the instance has
a smaller measure according to the chosen measure function.

Finally, a principle of definition is provided, by which the user can extend the axioms
by the addition of equations defining new function symbols. To admit a new recursive
definition, the principle requires the identification of an ordinal measure function and
a proof that the arguments to every recursive call decrease according to this measure.
Only terminating recursive definitions can be so admitted under the definitional prin-
ciple. (‘Partial functions’ can be axiomatized; see Maniolos and Moore (2000).)

The successful admission of a definition adds a new axiom. For example, the de-
finition of push above adds

Axiom
(push item stack) = (cons item stack).

The two variables are (implicitly) universally quantified.
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The measure used to justify the recursive function lookup is ac12-count. The
ac12-count of a natural number is that number. The ac12-count of an ordered
pair is one more than sum of the counts of the car and the cdr. Ac12-count always
returns a natural number.

As is customary in formal treatments of mathematical logic, from such basics a
variety of other rules of inference are derived to make proofs more practical. A more
thorough treatment of the logic is presented in Kaufmann et al. (2000b: Chapter 6).
The solutions to the exercises for that chapter (see the Books and Papers on the home
page and follow the obvious links) contain formal proofs of many elementary theorems
and a sketch of how more elaborate rules of inference are justified. See also Kaufmann
and Moore (1997).

The theorem prover

The ACL2 theorem prover is a symbolic manipulation engine driven from a collection
of rules in a database. The user determines the available rules, but in an indirect 
way. The rules are derived from theorems posed as challenges by the user and 
proved by the system. Thus, the logical soundness of the theorem prover cannot be
imperiled by the user. But the strategy employed by the theorem prover can be 
largely determined by the experienced user who understands how rules are derived
from theorems and what the effects of those rules are. The user may also direct the
system to read in all the rules in previously certified ‘books,’ thereby enabling the
sharing of results in the ACL2 community. In addition, the user may supply hints to
affect the system’s decisions and may specify low-level proof steps via an interactive
loop.

The system has many heuristics for determining its behavior. For example, heuris-
tics determine when it expands recursive function definitions, when it inducts, and
what induction hypotheses it assumes.

The system also contains many decision procedures and other high-level derived
rules of inference. For example, it can use a BDD procedure (Bryant 1992) to recognize
propositional tautologies, it has built in knowledge about linear arithmetic inequalities
(Boyer and Moore 1997), and it can use calculation to compute the values of functions
on constants.

The system prints a description of its evolving ‘proof ’ as it proceeds. It does not
produce a formal proof, but when it says ‘Q.E.D.’ we, the authors of ACL2, believe that
the computation it did is sufficient to guarantee the existence of a formal proof in the
logic described. The system often fails, either by abandoning the proof attempt or
running until the user aborts the attempt. In either case, it is up to the human user to
‘fix’ the situation, by reformulating the conjecture to prove or the hints provided, or by
further developing a database of rules.

The ACL2 theorem prover is an improved version of the Boyer–Moore theorem
prover, Nqthm (Boyer and Moore 1979, 1997; Boyer et al. 1995), adapted to applica-
tive Common Lisp. For more details of how it works, see Kaufmann et al. (2000b). We
illustrate it in the section entitled “Sample Output” below.

How good is ACL2’s theorem prover? That is, how automatic is it? At one level that
depends on how good a database of rules it has and whether the conjecture at hand
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falls in the class of formulas handled by that set of rules. But perhaps the intent of the
question is deeper. How far away from its rules can it operate successfully? How deep
are its proofs? The answer depends on whether you view the question from the per-
spective of the logician or the more traditional mathematician, who have very differ-
ent ideas of what the word ‘proof ’ means. Logicians think of proofs as sequences or
trees of formulas, expressed in a precisely defined syntax and related to one another by
a precisely defined set of inference rules. Most mathematicians think of proofs as 
informal but convincing arguments. The logician might very well consider ACL2 an
automatic theorem prover because it is not always obvious how to construct formal
proofs of some of the theorems it proves automatically. But the mathematician would
probably think of ACL2 as a proof checker, at best. The mathematician would find 
virtually everything ACL2 proves automatically to be ‘self-evident’ or ‘obvious’ from 
the theorems and definitions ACL2 had previously been led to accept. To the mathe-
matician, ACL2 is not so much finding a proof as it is checking one presented to it by the
human. This will become more obvious in Section 3.

3 A Modeling Problem

In this section we will deal with a simple variant of a classic example in the verification
literature, first done ‘by hand’ in McCarthy and Painter (1967) and by machine with
the Boyer–Moore prover in Boyer and Moore (1979). We will model an assembly lan-
guage for a push-down stack machine, formalize a simple arithmetic expression lan-
guage, implement a compiler that translates from arithmetic expressions to assembly
code, and prove the compiler is correct. In addition to illustrating the formalization of
some central ideas in computing – state machines, language semantics, compilation –
this example is appropriate because it deals with a few of the same issues that arise 
in model theory, for example the assignment of meaning to the sentences of a formal
language.

The assembly language

An instruction is a nonempty list. The opcode is the first element of the list. Some instruc-
tions have an operand, which is the second element.

(defun opcode (inst) (car inst))
(defun operand (inst) (car (cdr inst)))

The opcodes on our machine and their informal semantics are: (LOAD var) pushes 
the value of var onto the stack, (PUSH c) pushes the constant c onto the stack, 
(DUP) duplicates the top of the stack, (ADD) pops two items off the stack and pushes
their sum, and (MUL) pops two items off the stack and pushes their product. We 
formalize this with the function step, which takes an instruction to execute, an alist
giving the variable values, and a stack; the function returns the new value of the 
stack.
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(defun step (inst alist stk)
(let ((op (opcode inst)))
(cond

((equal op ’LOAD)
(push (lookup (operand inst) alist) stk))

((equal op ’PUSH)
(push (operand inst) stk))

((equal op ’DUP)
(push (top stk) stk))

((equal op ’ADD)
(push (+ (top (pop stk)) (top stk))

(pop (pop stk))))
((equal op ’MUL)
(push (* (top (pop stk)) (top stk))

(pop (pop stk))))
(t stk))))

A program is a sequence of instructions. They are executed sequentially with a given
alist and some initial stack. The final stack is returned.

(defun m (program alist stk)
(cond ((endp program) stk)

(t (m (cdr program)
alist
(step (car program) alist stk)))))

The function m formalizes the semantics of this simple programming language. For
example,

(m ’((LOAD A) (DUP) (ADD))
’((A . 7) (B . 4))
’(1 2 3))

‘simulates’ the execution of a program that pushes the value of A, duplicates it, and
adds the two values together. It does so in an environment in which the value of A is 7
and the value of B is 4. The initial stack is (1 2 3), a stack with 1 on top. The result
of this execution is the stack (14 1 2 3).

An expression language

An expression (and its value under an assignment) is a variable symbol (whose 
value is specified by the assignment), a numeric constant (which is its own value), or 
a list of one of the following forms (where the expri are expressions): (INC expr1)
(whose value is one more than that of expr1), (SQ expr1), (whose value is the square
of that of expr1), (expr1 + expr2) (whose value is the sum of those of the two 

A COMPUTATIONAL LOGIC FOR LISP

731



subexpressions), or (expr1 * expr2) (whose value is the product of those of the two
subexpressions).

We can formalize this as follows.

(defun eval (x alist)
(cond
((atom x)
(cond ((symbolp x) (lookup x alist))

(t x)))
((equal (fn x) ’INC)
(+ 1 (eval (argl x) alist)))
((equal (fn x) ’SQ)
(* (eval (argl x) alist)

(eval (argl x) alist)))
((equal (fn x) ’+)
(+ (eval (argl x) alist)

(eval (arg2 x) alist)))
((equal (fn x) ’*)
(* (eval (arg1 x) alist)

(eval (arg2 x) alist)))
(t 0)))

where

(defun fn (expr)
(if (equal (len expr) 2) (car expr) (car (cdr expr))))

(defun arg1 (expr)
(if (equal (len expr) 2) (car (cdr expr)) (car expr)))

(defun arg2 (expr)
(car (cdr (cdr expr)))).

Eval formalizes the semantics of this expression language. We can test it. For 
example, here is a transcript showing that the eval of a certain expression is equal 
to 400.

COMP ! > (eval ’(SQ (INC (A + (3 * B)))) ’((A. 7) (B. 4)))
400
COMP ! >

A compiler

A compiler is a translator from one language to another. We will compile arithmetic
expressions, as above, into our assembly language. The goal is to produce a program
that, when executed under a given assignment, will push the value of the expression
on the stack. The method is straightforward. To compile a product, say, we concatenate
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the compiled code for the two subexpressions and then generate an (MUL) instruction
to pop the two intermediate values off the stack and push their product. To compile (SQ
expr1), we will compile the subexpression and then generate a (DUP) followed by 
an (MUL). The others are similar. Here is the compiler.

(defun compile (x)
(cond
((atom x)
(cond
((symbolp x) (list (list ’LOAD x)))
(t (list (list ’PUSH x)))))

((equal (fn x) ’INC)
(append (compile (arg1 x))

’((PUSH 1) (ADD))))
((equal (fn x) ’SQ)
(append (compile (arg1 x))

’((DUP) (MUL))))
((equal (fn x) ’+)
(append (compile (arg1 x))

(compile (arg2 x))
’((ADD))))

((equal (fn x) ’*)
(append (compile (arg1 x))

(compile (arg2 x))
’((MUL))))

(t (list (list ’PUSH 0)))))

Append concatenates its arguments. We illustrate the compiler below.

Specification

The output of compile on the expression (SQ (INC (A + (3 * B)))) is the
program shown below.

COMP ! > (compile ’(SQ (INC (A + (3 * B)))))
((LOAD A)
(PUSH 3)
(LOAD B)
(MUL)
(ADD)
(PUSH 1)
(ADD)
(DUP)
(MUL))
COMP ! >

A COMPUTATIONAL LOGIC FOR LISP

733



This program is ‘correct’ in the sense that executing it leaves the value of the given
expression on top of the stack.

The specification of compile is that it produces correct programs for every expression.
A formalization of this claim is (equal top (m (compile x) a s)) (eval
x a)). We will name this conjecture main.

Mechanical proof

All of the definitions involved in the formalization above are automatically admitted by
the mechanical theorem prover. Ac12-count is the only measure needed and the
system ‘guesses’ that.

If we then submit main as a challenge conjecture, the ACL2 theorem prover runs
for 11 seconds (on a 731 MHz Pentium III) and gives up. Inspection of the proof attempt
using ‘The Method,’ described in Kaufmann et al. (2000b) and in the on-line ACL2
manual, produces the following insights. First, the proof will clearly involve induction
on the form of the expression x. Second, main is not strong enough to prove by induc-
tion. We must prove the conjecture that says ‘execution of the compiled code pushes the
value of the expression onto the pre-existing stack (leaving the other items there
intact).’ Our main does not insure that other intermediate values are not removed and
hence cannot be used to explain how the compiler works. Note that it is a common
mathematical trick to generalize a conjecture before doing proof by induction, and
although ACL2 provides a little support for making such generalizations automatically,
it is generally up to the user to do so.

The stronger conjecture is (equal (m (compile x) a s) (push (eval x
a) s)), which, if proved, clearly implies main. We name this conjecture lemma. The
attempt to prove lemma fails in about 6 seconds. Inspection of the failed proof reveals
that ACL2 chose an inadequate induction scheme. Consider the case for compiling a
sum expression. The theorem prover inductively assumes lemma for both subexpres-
sions. But it is obvious to the human user that the second induction hypothesis (that for
the second argument of the sum) must use the instance in which the stack s is the pre-
existing with one more thing pushed onto it: the value of the first subexpression.

Induction schemes are described to ACL2 by defining recursive functions that instan-
tiate their arguments appropriately. Here is the necessary definition, which is admitted
automatically.

(defun hintfn (x a s)
(cond
((atom x) (list x a s))
((equal (fn x) ’INC)
(hintfn (arg1 x) a s))
((equal (fn x) ’SQ)
(hintfn (arg1 x) a s))
((equal (fn x) ’+)
(cons (hintfn (arg1 x) a s)

(hintfn (arg2 x) a (push (eval (arg1 x) a) s))))
((equal (fn x) ’*)
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(cons (hintfn (arg1 x) a s)
(hintfn (arg2 x) a (push (eval (arg1 x) a) s))))

(t (list x a s))))

The value of this function is irrelevant. What matters is the case analysis it does and
the way it instantiates its arguments in recursion.

If we then tell ACL2 to prove lemma, advising it to induct the way hintfn recurs,
the proof attempt again fails. Inspection reveals that the system must be able to 
simplify (m (append x y) a s). This is obvious in retrospect: the compiler con-
catenates two recursively obtained code sequences and we must know how the machine 
deals with concatenated programs. The obvious relationship is given in the theorem
below.

(defthm composition
(equal (m (append x y) a s)

(m y a (m x a s))))

This is how the user actually submits a challenge to the theorem prover. The formula
above alleges that the execution of the concatenation of program x followed by program
y is equal to the execution of program y starting with the stack produced by the exe-
cution of program x. If ACL2 can prove this, it will build it in as a rewrite rule (by
default) and name the theorem composition. In fact, the system successfully proves
composition, by induction on x and simplification. We show the output under
“Sample output” below.

The system can now prove lemma, and can then use it to prove main. The two com-
mands, in full, are shown below.

(defthm lemma)
(equal (m (compile x) a s)

(push (eval x a) s))
:hints ((“Goal” :induct (hintfn x a s))))

(defthm main
(equal (top (m (compile x) a s))

(eval x a)))

The total amount of time to replay the entire successful proof sequence (including the
admission of all of the definitions) is approximately 2 seconds. All the necessary user
input has been exhibited here. An experienced ACL2 user might well have recognized
the importance of composition and lemma from the outset and would thus have
stated them as part of the initial proof plan. We mention the discovery process because
it is important in more complicated proofs where all the necessary lemmas are rarely
recognized in advance.

Sample output

Here is the output of the theorem prover on the composition theorem.
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COMP ! > (defthm composition
(equal (m (append x y) a s)

(m y a (m x a s))))

Name the formula above *1.
Perhaps we can prove *1 by induction. Three induction schemes are suggested by this
conjecture. These merge into two derived induction schemes. However, one of these is
flawed and so we are left with one viable candidate.

We will induct according to a scheme suggested by (M X A S), but modified to accom-
modate (APPEND X Y). If we let (:P A S X Y) denote *1 above then the induction scheme
we’ll use is

(AND (IMPLIES (AND (NOT (ENDP X))
(:P A (STEP (CAR X) A S) (CDR X) Y))

(:P A S X Y))
(IMPLIES (ENDP X) (:P A S X Y))).

This induction is justified by the same argument used to admit M, namely, the measure
(ACL2-COUNT X) is decreasing according to the relation EO-ORD-< (which is known
to be well-founded on the domain recognized by EO-ORDINALP). Note, however, that
the unmeasured variable S is being instantiated. When applied to the goal at hand the
above induction scheme produces the following two nontautological subgoals.
Subgoal *1/2

(IMPLIES (AND (NOT (ENDP X))
(EQUAL (M (APPEND (CDR X) Y)

A (STEP (CAR X) A S))
(M Y A (M (CDR X) A (STEP (CAR X) A S)))))

(EQUAL (M (APPEND X Y) A S)
(M Y A (M X A S)))).

By the simple :definition ENDP we reduce the conjecture to 
Subgoal *1/2’

(IMPLIES (AND (CONSP X)
(EQUAL (M (APPEND (CDR X) Y)

A (STEP (CAR X) A S))
(M Y A (M (CDR X) A (STEP (CAR X) A S)))))

(EQUAL (M (APPEND X Y) A S)
(M Y A (M X A S )))).

But simplification reduces this to T, using the :definitions BINARY-APPEND, M,
OPCODE, OPERAND, POP, PUSH, STEP and TOP, the :executable-counterpart of
EQUAL, primitive type reasoning and the :rewrite rules CAR-CONS, COR-CONS, 
COMMUTATIVITY-OF-* and COMMUTATIVITY-OF-+.
Subgoal *1/1
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(IMPLIES (ENDP X)
(EQUAL (M (APPEND X Y) A S)

(M Y A (M X A S )))).

By the simple :definition ENDP we reduce the conjecture to
Subgoal *1/1’

(IMPLIES (NOT (CONSP X))
(EQUAL (M (APPEND X Y) A S)

(M Y A (M X A S )))).

But simplification reduces this to T, using the :definitions BINARY-APPEND and M and
primitive type reasoning.
That completes the proof of *1.
Q. E. D.
Summary
Form: ( DEFTHM COMPOSITION . . .)
Rules: ((:DEFINITION BINARY-APPEND)

(:DEFINITION ENDP)
(:DEFINITION M)
. . . material deleted . . .
(:REWRITE CDR-CONS)
(:REWRITE COMMUTATIVITY-OF-*)
(:REWRITE COMMUTATIVITY-OF-+))

Warnings: None
Time: 0.09 seconds (prove: 0.06, print: 0.02, other: 0.01)
COMPOSITION

4 Case Studies

The compiler example illustrates two different models, a theorem relating them, 
and the role of the user in structuring ACL2’s proofs by the discovery of appropriate
lemmas. At http://www.cs.utexas.edu/users/moore/publications/
flying-demo/scipt.html you will find this example and many others, including
the correctness of an insertion sort function, the correctness of a binary adder and of
a multiplier, the formal semantics of a simple netlist description language – a language
like that used to describe circuits – and the correctness of a function that generates a
description of an adder, and some theorems abut Java byte code programs. The web
pages show the definitions, many example computations, and most of the proofs,
including all of the proofs for the compiler example discussed here.

These models are suggestive of how ACL2 is used. But they are trivial by the stan-
dards of industrial machine designs and realistic programming languages. The stack
machine above is fully specified in about two dozen lines of code; the proof required two
lemmas. Industrial applications of ACL2 have involved hundreds of pages of code to
formalize a single model and thousands of lemmas to relate two such models.
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We now briefly describe a few such applications. For more details, see Kaufmann 
et al. (2000a) and Kaufmann and Moore (2000), collections of case studies written 
by ACL2 users.

ACL2 has been used to model several industrial microprocessors. The models are
similar to that for m: a ‘state’ is formalized as an n-tuple of various components like
stacks, registers, etc., and a state-transition function, step, is defined. The Motorola
CAP digital signal processor (DSP) (Brock et al. 1996; Brock and Hunt 1997; Gilfeather
et al. 1994) was modeled at two levels: the pipeline level, where several instructions 
are simultaneously being decoded and carried out; and the user level, where instruc-
tions are executed sequentially. Both models were bit- and cycle-accurate in the sense
that they specified all the state components completely on every step. The two models
were shown equivalent under certain conditions on the program being executed.
Another commercial microprocessor modeled with ACL2 is the Rockwell JEM1 (Greve
and Wilding 1998; Wilding et al. to appear) – the world’s first silicon Java Virtual
Machine. ACL2 has been used to verity commercial DSP (Brock and Moore 1999)
microcode. It has been used to prove the IEEE compliance of the FDIV microcode for
the AMD-K5TM processor2 (Moore et al. 1998) and of the circuit descriptions imple-
menting each of the elementary floating-point operations on the AMD Athlon
(Russinoff 1998; Russinoff and Flatau 2000). It has been used to verify a pipelined
machine providing interrupts and exceptions in the face of speculative out-of-order exe-
cution (Sawada and Hunt 1998) and a security model for the boot code of the IBM
4758 (Smith and Austel 1998).

Not all of ACL2’s applications are at the hardware level. ACl2 is being used to prove
properties of Java byte code (Moore 1999; Moore and Porter 2000a, 2000b), includ-
ing multi-threaded programs.

ACL2 has been used to provide a trusted (verified) proof-checker for the Otter
theorem proving system (McCune and Shumsky 2000). Otter is perhaps the preemi-
nent resolution-style theorem prover and has been under development at Argonne
National Labs for decades. When Otter claims success, it can give its proof to a much
simpler theorem prover for checking, and one such checker was verified to be sound for
finite models by ACL2. In a similar kind of work, ACL2 was used to verify a checker for
an off-line compiler for safety-critical train-borne real-time control software (Bertoli
and Traverso 2000).

ACL2 has been used to prove the correctness of a model checker (Manolios 2000),
the alternating-bit protocol (Manolios et al. 1999), a BDD package (Sumners 2000),
and many other algorithms.

An extension of the system by Ruben Gamboa (1999) adds the real numbers via
nonstandard analysis and many interesting theorems in real analysis have been proved
including trigonometric identities, Euler’s identity, the fundamental theorem of calcu-
lus (Kaufmann 2000) and theorems about continuity and differentiability (Gamboa
2000). See also Gamboa and Kaufmann (1999).

The ACL2 home page contains links to many other papers reporting ACL2 
applications.

MATT KAUFMANN AND J. STROTHER MOORE

738



Notes

1 AMD, the AMD logo, and combinations thereof, and AMD Athlon are trademarks of
Advanced Micro Devices, Inc.

2 AMD, the AMD logo, and combinations thereof, and AMD-K5 are trademarks of Advanced
Micro Devices, Inc.
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Further Reading

If you are interested in reading more about ACL2, the definitive book is Kaufmann et al. (2000b),
which explains the programming language, the logic, the theorem prover, and how to use them.
The book contains exercises, and the solutions to the exercises are available on the Web through
the ACL2 home page http:/www.cs.utexas.edu/users/moore/acl2. A wealth of additional reading
material is available from the home page.

In addition, ACL2 is available at no fee under the GNU General Public License. You may install
it and then define functions, execute them, and learn to prove theorems with the ACL2 theorem
prover. Installation instructions and several megabytes of hypertext documentation are available
on the ACL2 home page. Also of value are the two short tours link on the home page and 
the previously mentioned flying demo, http://www.cs.utexas.edu/users/moore/publications/
flying-demo/script.html.
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