
Part XIV

MECHANIZATION OF LOGICAL INFERENCE
AND PROOF DISCOVERY

709

44

The Automation of Sound Reasoning and
Successful Proof Finding

L A R RY WO S A N D B R A N D E N F I T E L S O N

1 The Cutting Edge

The consideration of careful reasoning can be traced to Aristotle and earlier authors.
The possibility of rigorous rules for drawing conclusions can certainly be traced to the
Middle Ages when types of syllogism were studied. Shortly after the introduction of
computers, the audacious scientist naturally envisioned the automation of sound rea-
soning – reasoning in which conclusions that are drawn follow logically and inevitably
from the given hypotheses. Did the idea spring from the intent to emulate Sherlock
Holmes and Mr. Spock (of Star Trek) in fiction and Hilbert and Tarski and other great
minds in nonfiction? Each of them applied logical reasoning to answer questions, solve
problems, and find proofs. But can such logical reasoning be fully automated? Can a
single computer program be designed to offer sufficient power in the cited contexts?

Indeed, while the use of computers was quickly accepted for numerical calculations
and data processing, intense skepticism persisted – even in the early 1960s – regarding
the ability of computers to apply effective reasoning. The following simple (but perhaps
deceptive) example provides a taste of the type of argument that might have been used
to support this skepticism.

If one is given a puzzle concerning who holds which jobs, is told that the job of nurse
is held by a male, and is asked about the possible jobs for Roberta, one quickly concludes
that she is not the nurse. How could a computer program rapidly draw this correct con-
clusion? After all, the computer would not know that Roberta is (implicitly) female, and,
of greater usefulness, it would not know that being a female implies that one is not a
male. In fact, even a person often does not realize that the latter fact is used in drawing
the correct conclusion for this puzzle. Since the answering of deep questions and the
solving of hard problems require far more lengthy paths of reasoning, where do things
stand today regarding the automation of drawing conclusions that are sound and
relevant, and what is the contemporary view concerning this effort?

In answer to the latter question, still debated with vigor and fascination is the value
of automation both in the context of inference rule application for drawing conclu-
sions and in the context of useful proof finding, whether the area be mathematics, logic,
circuit design, program verification, or puzzle solving. This essay may settle the issue

for many. Indeed, proofs that for decades have eluded some of the greatest logicians
and mathematicians have recently been obtained with a single program, William
McCune’s OTTER (McCune 1994). (Various other reasoning programs exist; some offer
far less power, while others are special-purpose programs, for example, designed mainly
for program verification. A special-purpose program is in the majority of cases not
nearly as useful as a general-purpose program is in the context of attacking a wide
variety of deep questions, such as offered by logic and mathematics.) In Section 3, we
shall list some of the theorems that had remained elusive for many, many years, theo-
rems that were recently proved by an automated reasoning program and, moreover,
proved in but a few CPU-hours. For the eager reader, we note that the material that
is offered in Section 2 is not required for an appreciation of the significance of the
successes.

The material presented here is at the cutting edge, featuring proofs not found in the
literature of the masters that include Hilbert and Ackermann, Tarski and Bernays, Rose
and Rosser, Ĺukasiewicz, and Meredith. The proofs concern results that fall mainly into
three classes: those proved in a nonaxiomatic manner, where an axiomatic proof is pre-
ferred; those announced without proof; and those whose proof eluded all attempts. To
be current, we focus mainly on successes from mid-1998 to the present. Our presenta-
tion – emphasizing examples rather than formalism – makes the content of this essay
equally accessible to student and researcher alike, and we assume no background.
Nevertheless, what we discuss offers depth, scope, and challenge. Among the treasure,
one finds that – through automation – various theorems have been proved whose proof
waited for many, many years. One also finds open questions to consider, questions that
might be attacked using the program OTTER offered in the first of two intriguing new
books on automated reasoning (Wos and Pieper 1999, 2000).

Immediately one might ask how a computer program was able to extend the work
of great scholars in such an impressive manner. Indeed, not much more than 50 years
ago, what did the eminent logician Ĺukasiewicz fail to see when he asserted that a for-
malized proof cannot be ‘discovered mechanically’ but can only be ‘checked mechani-
cally’ (Ĺukasiewicz 1948)? (His remark would still have held essentially even in the late
1970s.) Surely the execution speed of today’s machine cannot be the answer: logic and
mathematics are far too deep to admit such a simple solution in the context of proof
finding. Nor can the answer rest with overcoming the obstacle of the implementation
of sound reasoning (inference rules); this obstacle was not severe. Can it be (as some
prophesied in the 1960s) that a means has been found to effectively emulate the
problem-solving skills of the gifted? That explanation also misses the mark, misses it
widely, for no such means has yet been devised.

Instead, (for us) the key to the discovery of so many long-sought proofs rests with
the reliance on diverse strategies, some to restrict a program’s reasoning and some to
direct it. (Some authors, including M. Fitting, use the word heuristic in a manner similar
to our use of the word strategy; other authors sometimes use strategy in the context of
a specific problem rather than to problems in general.) The occasional ease of discovery
is startling even to us who have used OTTER for years. We shall illustrate a powerful
strategy that restricts reasoning and an effective strategy that directs it. The nature of
both strategies, as well as that of numerous others that are offered by OTTER, permits
their embedding in many unrelated reasoning programs.

LARRY WOS AND BRANDEN FITELSON

710

We shall shed much light on the texture of the strategies that are employed, and thus
show why the automation of proof finding is often so successful. To address the con-
cerns of many, and to complete much of the picture, among the pressing questions, this
essay answers the following. What, if any, are the important differences between a
program’s reasoning and that of a person? What are the advantages and disadvantages
of reliance on a program that applies logical reasoning? What (if any) means are
employed to enable a program to reason effectively, in contrast to merely accruing new
conclusions until by accident the goal is reached? How does such a program ‘know’
when an assignment has been completed, in particular, that a proof has been found?
To what practical uses can such a program be put? Which significant open questions
have been answered by such a program, and how much guidance was provided by the
researcher?

2 Automated Reasoning, Principles and Elements

The breakthrough leading to the more successful mechanization (automation) of infer-
ence rule application and proof finding can perhaps be traced to the formulation of and
adherence to a few principles. The first of these principles asserts that more general
statements are preferred over less general. The second (which overlaps the first) con-
cerns the avoidance of what might be termed ‘person-oriented reasoning.’ To illustrate
the two principles, a single example taken from everyday language suffices; it also pro-
vides a taste of the language typically used by the more powerful reasoning programs
and a glimpse of the typical test (discovery of a proof by contradiction) used to deter-
mine assignment completion.

Consider the following two statements, innocently uttered by someone in casual con-
versation. “Plato likes everybody” and “Nobody likes Plato.” A casual interpretation of
the given two utterances perhaps leads to mere acceptance and to no conclusion.
However, closer inspection shows that the two statements contradict each other.
Indeed, formally, the first can be written, for all x, LIKES(Plato,x). Where ‘-’ denotes
logical not, the second can be formally written, for all y, -LIKES(y,Plato). The contra-
diction is quickly made transparent by substituting Plato for both x and y in the respec-
tive two statements. In other words, overlooked in the casual interpretation is the fact
that the first statement includes the case that Plato likes himself, where the second says
that he does not. Indeed, where everyday language typically would have permitted the
two statements to be accepted simultaneously without blanching, logically the two
form a contradictory pair.

If the explicit use of ‘for all’ (universal quantification) is removed with the corre-
sponding variables treated as implicitly meaning ‘for all,’ then one has two examples of
a clause and a small taste of the basic linguistic unit used to present information to an
automated reasoning program. (For OTTER, a variable is denoted by an expression
beginning with a letter between lower-case u and z inclusive.) The example also
provides a glimpse of the typical test for assignment completion that an automated
reasoning program relies upon.

Regarding both the principle of generality preference and that of person-oriented
reasoning avoidance, the detection of contradiction (inconsistency) by the program

THE AUTOMATION OF SOUND REASONING

711

does not require the application of the cited substitution to explicitly produce, respec-
tively, the two variable-free statements LIKES(Plato,Plato) and -LIKES(Plato,Plato).
Indeed, the program prefers the two (original) statements as uttered, in their given gen-
erality, without making the substitution that would emulate what a person would most
likely do. To further clarify the picture focusing on both the preference for generality
and the avoidance of person-oriented reasoning, two additional examples are in order,
examples offering more depth.

When a researcher, such as an algebraist, is producing a proof, the conclusions that
are presented are often influenced by their intended use. Therefore, although the
conclusion in the middle of the presentation that the square of x is the identity e
may be justified, instead one might find the conclusion (yz) (yz) = e. Because of the basic
mechanisms relied upon (which will be illustrated), the type of reasoning program
under discussion would prefer the conclusion EQUAL(prod(x,x),e) and would avoid
EQUAL(prod(prod(y,z), prod(y,z)),e). (Each equality is a clause, more examples of the
language used in automated reasoning.) The first equality offers more generality; the
second emulates the kind of reasoning more typical of the researcher not relying on a
reasoning program.

Although most likely far from obvious, the preference for generality contributes
markedly to effectiveness. (For a pertinent example of the type of general reasoning, in
the context of equality, applied by a reasoning program but not ordinarily by a person,
see the discussion of paramodulation in the section entitled “Inference Rules” below.)
Also far from obvious, no effective automated technique is known for wisely choosing
which of the myriad of less general conclusions to draw, indeed, how to effectively
emulate that aspect of person-oriented reasoning. In other words, automated reason-
ing programs do not offer the type of reasoning called instantiation, which can be used
to yield the second equality from the first by replacing (instantiating) x by yz. Although
instantiation serves logicians and mathematicians well, unless an effective strategy is
discovered to control its use, instantiation is unneeded and even unwanted in the
context of mechanizing inference rule application and proof finding. Indeed, its use
(in effect) conflicts with a reasoning program’s preference for generality that in turn
contributes to effectiveness.

For the promised second example, an aspect of logic suffices. If one browses with
some care in the literature focusing on implication (denoted here by i), one finds within
proofs the deduction of formulas such as i(i(x,y),i(x,y)), where the deduction of the
formula i(z,z) would have been justified and sound. Generality was not the choice;
rather, the choice was based on what was deemed more convenient for subsequent
steps. Similar to the preceding discussion of the two equalities, the automated reason-
ing program would have deduced the latter formula, because of its generality, and
would have avoided the former even though its use emulates the mind of an expert.
Because of this practice, with reliance on the program, occasionally more general
proofs are found and more general theorems are proved (which we shall cite).

The basic elements of automated reasoning

The paradigm (for the automation of logical reasoning) featured in this essay rests on
six elements: a language for presenting the question or problem under study; types of

LARRY WOS AND BRANDEN FITELSON

712

reasoning (inference rules) for drawing conclusions some of which are adjoined to the
supplied information; strategies for controlling the reasoning; a means for simplifying
and canonicalizing information; a means for purging types of redundant information;
and a means for determining assignment completion (most often, proof finding).
Regarding other paradigms, some differ by addition, some by subtraction. Specifically
(in the spirit of addition), some offer induction, where such is not the case for the par-
adigm in focus here. As for subtraction, some paradigms do not retain new conclusions,
which (to us) accounts in part for their lack of power compared with that which (for
example) OTTER offers by accruing sometimes a vast number of new conclusions.
Equally serious, but of a different nature, many paradigms do not emphasize the use of
types of strategy, indispensable for attacking deep questions and hard problems in our
view. Regarding another crucial omission, some paradigms do not offer a built-in treat-
ment of equality.

Language
For presenting a question or problem for study by an automated reasoning program,
the clause language (a dialect of first-order predicate calculus) serves nicely. Its lack of
richness is an asset, not a liability. Indeed, rich languages offer more obstacles for
formulating effective strategies for reasoning within them. However, the nature of the
clause language does present at least an annoyance for one who wishes to enlist the
aid of a reasoning program.

In the clause language, only two logical connectives are explicitly permitted, not
(denoted by ‘-’) and or (denoted by ‘|’). Between each pair of clauses logical and is
present implicitly. In place of logical if-then (logical implies), not and or suffice; one
simply replaces if P then Q with not P or Q. This replacement rule dictates what must
be done for the logical operator equivalent.

Regarding variables, every variable within a clause is implicitly treated as meaning
‘for all,’ universally quantified. Existentially quantified variables are replaced with
appropriate functions, Skolem functions and constants. Explicit quantification is not
permitted. The scope of a variable is limited to the clause in which it occurs. Therefore,
if a variable, say x, appears in two different clauses, it is treated as merely a coincidence,
as if the two names are distinct. A few examples illustrate how it works.

For the assertion that Nan and Larry like cats, one writes two clauses, (1)
LIKES(Nan,cats) and (2) LIKES(Larry,cats). The clause language implicitly assumes
(logical) and between every pair of clauses. If one prefers to be more formal and be
more precise, one writes -IS(x,cat)|LIKES(Nan,x) and its counterpart.

Since programs such as OTTER offer a built-in treatment of equality, one can write
for the equality of x and minus(minus(x)) the clause EQUAL(x,minus(minus(x))).
For the statement that for all x there exists a y with y greater than x, one writes
GREATER(x,f(x)), where the function f is a Skolem function introduced for the existen-
tially quantified variable y. The clause exhibits the dependence of y, in the form of f(x),
on x.

Inference rules
At the heart of all of the inference rules that are used by the type of program fea-
tured here (of which OTTER is but one example) is a procedure called unification, a

THE AUTOMATION OF SOUND REASONING

713

procedure that looks for substitutions that modify variables as little as need be to find
a common expression. For example, from the clause IS(Snowflake,cat) and the clause
-IS(x,cat)|LIKES(Nan,x), a program can deduce LIKES(Nan,Snowflake) by replacing x
by the constant Snowflake and applying modus ponens, the rule that asserts the
deducibility of Q from the pair P and P implies Q. (Recall that logical if-then, implies,
can be replaced by using logical not and logical or.) Similarly, for the two clauses cited
earlier focusing on Plato, (as noted) a substitution into each was possible that yielded
a contradiction.

In contrast, if one considers the clause Q(x,x) and the clause -Q(y,f(y)), no contra-
diction can be found because no appropriate substitution exists. The general rule when
applying unification (in the context of the preceding example) asserts that one is not
allowed to substitute a term containing as a subterm a variable for that variable. As the
following illustrates, most-general substitutions are always what the program seeks
to find, which is not always the case in the literature of logic and mathematics (as
discussed somewhat differently earlier). In the spirit of syllogism, from the clause
-P(x)|Q(x,a,u) and the clause -Q(b,y,v)|R(y,v), the program can deduce the clause
-P(b)|R(a,u). Although the reasoning would be sound, the program would not, for
example, deduce -P(b)|R(a,a).

To determine whether two expressions are unifiable, one seeks a table of substitu-
tions of terms for variables. An effective approach is to, first, rename all the variables
so that no variable name appears in common in the two expressions and, second,
proceed left to right, continually updating the table. Unification can fail for a variety of
reasons, such as when one finds a term containing a variable opposite that same
variable.

The arsenal of inference rules that is offered is not restricted to those that con-
sider hypotheses taken two at a time. Indeed, one of those rules (hyperresolution)
serves perfectly for the study of many areas of logic, as the following shows. First,
consider a mundane example concerning relations among people. From the clause
-PARENT(x,y)|-FEMALE(x)|MOTHER(x,y) and the clause PARENT(G,K) and the clause
FEMALE(G), an application of hyperresolution yields the clause MOTHER(G,K). This
inference rule, which by definition is required to yield clauses free of logical not, con-
siders the three clauses simultaneously.

Not far removed from this mundane example is the following incarnation of the
inference rule condensed detachment, frequently used in logic. Indeed, consider the clause
-P(i(x,y))|-P(x)|P(y), which is quite reminiscent of modus ponens, asserting that the
presence of x implies y and x justifies the conclusion of y. In the given three-literal
clause, the expression unified with the first literal is called the major premise, and that
unified with the second literal the minor premise. If P(i(i(x,y),i(i(y,z),i(x,z)))) is the major
premise and P(i(i(u,v),i(v,u))) is the minor premise, the use of condensed detachment
yields P(i(i(v,u),z),i(i(u,v),z)) as the conclusion. For the conclusion, no substitution is
required for the variables in the minor premise.

Far more complicated (and clearly not easily seen) is the case (taken from equiv-
alential calculus, with the function i replaced by the function e) in which both the major
and minor premises are P(e(e(e(e(x,e(y,z)),e(y,x)),e(z,u)),u)) and condensed detachment
is applied. The conclusion that is yielded is P(e(x,x)), requiring a nontrivial substitution
for the variables in both the major and the minor premise. Such complicated unifica-

LARRY WOS AND BRANDEN FITELSON

714

tions are in no way difficult for an automated reasoning program, but they can be tire-
some (or worse) for an unaided researcher.

Of the various inference rules, one of the more complicated is paramodulation, which
enables an automated reasoning program to treat equality as if it is ‘understood.’
Paramodulation – which is the best example of a computer-oriented inference rule, and
one that a person probably should not apply by hand – generalizes the usual notion of
equality substitution. The following example illustrates the cited generalization and
demonstrates that paramodulation is indeed computer oriented. Paramodulating from
the equation x + (-x) = 0 into the equation y + (-y + z) = z yields in a single step the
conclusion y + 0 = -(-y).

Strategy
Because the space of deducible conclusions is so huge (many, many millions), without
the use of strategy to restrict and strategy to direct the reasoning, an attempt to find
significant proofs would be doomed. In contrast to reasoning programs, researchers
succeed because of much knowledge, intuition, and experience. But often proofs that
are desired escape even the masters. In Section 3, we give examples of such proofs –
proofs that were missing for decades, but that were found through automation.

Two strategies provide a fair taste of what is needed and of what has made the
difference. The first strategy, the set of support strategy, was formulated to restrict a
program’s reasoning. For this strategy, the term ‘special hypothesis’ was introduced,
referring to that part of the problem presentation that is outside of the set of axioms
and conclusion to be proved. In one of the two strongly recommended uses, the strat-
egy allows a program to draw a conclusion only if it can be recursively traceable to
either the special hypothesis or the denial of the conclusion to be proved. For example,
if one is asked to prove that rings in which the cube of x equals x (for all x) are com-
mutative, the special hypothesis consists of the property that xxx = x. The denial of the
conclusion, in the preceding, consists of the assumption that such rings are not com-
mutative, that there exist two elements a and b with ab not equal to ba.

In general, when one asks a reasoning program to attempt to find a proof, one sup-
plies a set of statements that include those that correspond to assuming that the con-
clusion of the theorem under study is false. As indicated earlier, the test that is used for
assignment completion, especially for the determination that a proof has been com-
pleted, is the detection of a contradiction. For the set of support strategy in its purest
form, (put another way) the program is restricted from applying the chosen inference
rules to sets of hypotheses all of which are members of the axioms. By imposing such
a restriction, the program is prevented from exploring the underlying theory and,
instead, is forced to key recursively on the special hypothesis and the denial of the con-
clusion. Often, our preference is to instruct the program to recursively key on the special
hypothesis alone, using the denial of the conclusion solely to detect that the assign-
ment has been completed. The following simple syntactic example illustrates the use of
the set of support strategy.

Let the axioms consist of three clauses: P|Q; -Q|R; -R|S. Let the special hypothesis
consist of the single clause -P, and let the conclusion to be proved consist of the single
clause S. The denial of the conclusion is, therefore, -S. The search for a proof can begin
by focusing mainly on the axioms until the clause P|S is deduced, and then hyperreso-

THE AUTOMATION OF SOUND REASONING

715

lution can be used to consider that clause with the special hypothesis and the denial of
the conclusion to show that a contradiction has been found. However, if one imagines
the case in which the set of axioms is far, far richer, one can easily conjecture that the
program might get lost (among a huge set of deduced-and-retained conclusions) and
never find a proof. Instead, with the set of support strategy, keying on the special
hypothesis, in succession, Q is deduced, then R, then S, which with -S provides the
sought-after contradiction.

In contrast to the preceding strategy (which restricts the reasoning of a program),
the resonance strategy directs the reasoning. With this strategy, the researcher supplies
formulas or equations (resonators) that are deemed attractive in the sense that any
formula or equation that is similar to a resonator is given preference for driving the
program’s reasoning, where ‘similar’ means that there is an exact match if all variables
are treated as indistinguishable. To illustrate the use of the resonance strategy, let us
consider the following clauses that axiomatize two-valued sentential (or propositional)
calculus, where the function i denotes implication, the function n denotes negation,
and the predicate P denotes ‘provable.’

% Ĺukasiewicz 1 2 3.
P (i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(n(x),x),x)).
P(i(x,i(n(x),y))).

If the researcher conjectures that any formula that is similar (in the sense just given)
to one of the axioms merits immediate attention, then the three axioms are placed in
an appropriate list. Because of being similar to the first of the three axioms – with the
use of the resonance strategy – the formula P(i(i(x,x),i(i(y,u),i(x,v)))) will be given
prompt consideration for initiating applications of, say, condensed detachment when
and if it is deduced and retained.

With either of the two given strategies, the researcher can provide substantial aid to
a reasoning program by a judicious choice of, respectively, which clauses to recursively
key upon and which to consider heavily and immediately.

Canonicalization and redundancy
Another aspect of automated reasoning that contributes to effectiveness is its ability,
when given the appropriate equalities, to automatically canonicalize and simplify infor-
mation. For example, in the presence of the equality EQUAL(sum(0,x),x), if the program
is instructed to do so, new conclusions are automatically rewritten, with subterms of
the form sum(0,t) for terms t replaced by t. The procedure is called demodulation. With
its use as described, a class of redundant information is purged. In particular, quite
similar items are not kept in the many forms that might otherwise be kept. Such is the
case for laws that include associativity, where, if so instructed, the program will not
retain the many associated forms of a given expression.

Another mechanism, called subsumption, is relied upon to purge different identical
copies of the same conclusion and, perhaps more important, to purge proper instances
of retained conclusions. For example, if a program has retained EQUAL(prod(x,x),e) (for
the identity e, as in the study of group theory), it will immediately purge through the

LARRY WOS AND BRANDEN FITELSON

716

use of subsumption items such as EQUAL(prod(prod(y,z),prod(y,z)),e). By taking such
an action and others of a more complicated nature, a reasoning program focuses again
on generality and avoids emulation (in the sense that a person might retain less general
information in the presence of more general).

An intriguing proof

We close this section with an impressively short proof that nicely illustrates: (1) that
which an automated reasoning program does well and (2) that which might have
eluded fine minds for a long time. The proof is also of value to logic because of focus-
ing on two three-axiom systems for two-valued sentential (or propositional) calculus.
The first system (consisting of what Ĺukasiewicz denotes as theses 19, 37, and 60) was
found through automation; the second (consisting of theses 19, 37, and 59) is due to
Ĺukasiewicz himself. Because the two axiom systems share in common two members
(theses 19 and 37), what is required (to prove that the set of formulas consisting of 19,
37, and 60 is an axiom system) is a deduction of thesis 59 (whose negation is found as
the input clause numbered 6) from theses 19, 37, and 60 (respectively, the input clauses
numbered 7 through 9).

When the eminent logician Dana Scott was notified of the following four-step proof,
his reaction, by e-mail, was that it might indeed be “a very neat proof that would not
be obvious to a human investigator.” Scott explained that it is not particularly easy to
do unification in one’s head – and is he ever right!

A neat proof focusing on the Wos axiom system for two-valued sentential calculus

5 [] -P(i(x,y))|-P(x)|P(y).
6 [] -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r))))|$ANS(negation_thesis_59).
7 [] P(i(i(i(x,y),z),i(y,z))) # label(thesis_19).
8 [] P(i(i(i(x,y),z),i(n(x),z))) # label(thesis_37).
9 [] P(i(i(u,i(n(x),z)),i(u,i(i(y,z),i(i(x,y),z))))) # label(thesis_60).

16 [hyper,5,9,8] P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))).
23 [hyper,5,16,7] P(i(i(x,i(y,z)),i(i(i(u,y),x),i(y,z)))).
30 [hyper,5,23,7] P(i(i(i(x,y),i(i(z,y),u)),i(y,u))).
34 [hyper,5,30,9] P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))) # label(thesis_59).

Clause (34) contradicts clause (6), and the proof is complete.

3 Significant Successes

We begin the discussion of successes obtained via automation with a success that is of
especial satisfaction and significance. The reasons for assigning such importance to it
will become clear almost immediately. Where the function i denotes implication, the
function n denotes negation, and the predicate P denotes ‘provable,’ the success to be
discussed first concerns a 23-letter single axiom (the following, found in 1936 by
Ĺukasiewicz) for two-valued sentential (or propositional) calculus.

THE AUTOMATION OF SOUND REASONING

717

P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x)i(u,x))))).

In his 1936 paper (footnote 10), Ĺukasiewicz suggests how difficult finding proofs of
single axioms is. He laments: “Such research is ... so laborious that it cannot be said
when, if ever, it will be completed.”

What made finding a proof that the given single axiom suffices for two-valued
sentential calculus unusually satisfying was the fact that no proof was given by
Ĺukasiewicz, and, from what we can ascertain, no proof was ever published – until the
automated reasoning program OTTER was brought into play in mid-1999. In fact, as
far as we know, not even a hint was provided in the literature concerning a method for
finding such a proof, nor was a hint provided concerning the target for such a proof –
although one might surmise that Ĺukasiewicz had in mind his three-axiom system
rather than, say, the axiom system of Hilbert or some other system.

The finding of the desired proof through mechanization can justly be viewed as a
reward for adhering to one of the key principles regarding experimentation. In partic-
ular, the formulation of a promising methodology demands its testing on difficult prob-
lems that are not required to be related to its wellspring. The genesis of the methodology
(whose key aspects will be given shortly) was the study of an even shorter single axiom
for two-valued sentential calculus, the following.

P(i(i(i(i(i(x,y),i(n(z),n(u))),z),v),i(i(v,x),i(u,x)))).

That axiom was provided by Meredith (1953) 16 years after Ĺukasiewicz presented his
23-letter axiom and (most likely) in response to an implied Ĺukasiewicz challenge about
finding a single axiom with strictly fewer than 23 letters.

Although Meredith supplied what amounts to a 41-step proof (relying, in effect, on
condensed detachment), our goal was to find a means for a reasoning program to
produce a proof without guidance from the researcher. We had sought such an
approach for at least five years, and, in mid-1999, we formulated one that indeed pro-
duced a proof, a proof substantially different from Meredith’s. When we applied the new
methodology to the study of the Ĺukasiewicz 23-letter axiom, in but four runs, in one
afternoon, OTTER produced the first proof we had ever seen, one of length 200 (appli-
cations of condensed detachment).

Regarding the methodology and its key aspects, first, it is iterative. It relies on the use
of the set of support strategy, adjoining to the appropriate list from run n (to be used in
run n + 1) results obtained in run n. Although various known axiom systems were
admitted as targets to determine that a desired proof had been completed, for our attack
on the 23-letter formula, the main target was the Ĺukasiewicz three-axiom system for
this area of logic. The resonance strategy also plays a key role. As for resonators –
keeping in mind that we had no clue about the nature of the sought-after proof – we
chose to use 68 theses proved by LĹukasiewicz, theorems that hold in two-valued sen-
tential calculus. Finally, based on numerous earlier successes, we chose to take an
action that one might indeed find counterintuitive, for the action on the surface made
the task harder to complete. Specifically, we chose to instruct OTTER to avoid the use
of double negation, avoid retaining any new conclusion that contained a term of the
form n(n(t)) for any term t.

LARRY WOS AND BRANDEN FITELSON

718

As for properties of the 200-step proof that was found, only eight of its steps are
among the 68 theses used as resonators, and only 22 of the 200 steps match one of
the 68 resonators (treating all variables as indistinguishable). We include this data in
part to address the understandable concern that the researcher may have played an
unintentional but key role, in other words, provided much guidance. Such was not the
case; we were merely testing the methodology, with, of course, the hope that great
fortune would occur; we knew nothing relevant to a possible proof. Double-negation
terms are indeed absent. Thus we offer the following open question. Where P and Q may
each be collections of formulas, if T is a theorem asserting the deducibility of Q from
P such that Q is free of double negation, what conditions guarantee that there exists a
proof relying solely on condensed detachment all of whose deduced steps are free of
double negation?

Among the other successes we obtained through mechanization – some of which
were missing for decades – are the following. In infinite-valued sentential calculus,
where logical or of x and y can be represented with i(i(x,y),y), one can prove that or
is associative. This area of logic can be axiomatized with the following five formulas
(represented as clauses), where the fifth is dependent on the first four.

P(i(x,i(y,x))).
P(i(i(x,y),i(i(y,z),i(x,z)))).
P(i(i(i(x,y),(y),i(i(y,x),x))).
P(i(i(n(x),n(y)),i(y,x))).
% Following is MV5, which is a dependent axiom.
P(i(i(i(x,y),i(y,x)),i(y,x))).

As far as we know, until mid-1999, no condensed detachment proof (of associativity)
had been reported in the literature. Not only did automation find such a proof – where,
before, the only published proofs were not purely axiomatic because they relied partially
on reasoning in the metatheory – a more general theorem was proved by OTTER. The
generality of the basic mechanisms relied upon by automated reasoning, for example,
unification, may have been the primary key to finding the more general result.

Next meriting mention are various distributive laws that hold in infinite-valued sen-
tential calculus. Some forms of distributivity have been proved using a combination of
axiomatic and metatheoretic reasoning. But some valid forms have eluded proof of any
kind. For example, if we define x or y as i(i(x,y),y) and x and y as n(i(i(n(x),n(y)),n(y))),
then or and and distribute over each other in infinite-valued logic. This can easily be
established semantically, but proving these distributivity laws from the complete set of
axioms given earlier for infinite-valued logic (together with the rule of condensed
detachment) is something that eluded even Rose and Rosser (1959: 12), who wrote the
definitive treatise on infinite-valued logic.

Again, mechanization of proof finding met the test, producing the missing proofs
based solely on condensed detachment. For the curious who wonder about the appeal
of axiomatic proofs and, even more, of proofs relying on a single inference rule, note
that they are often more enlightening and often easier to understand.

Of a different nature are questions focusing on possible axiom dependence. Indeed,
a book by Epstein (1994) poses several such questions. Automation has quickly settled

THE AUTOMATION OF SOUND REASONING

719

some of Epstein’s open questions. In one case (Epstein 1994: 85, problem 12), an
appropriate dependence proof was found, when OTTER showed how one of the axioms,
the axiom i(x,i(y,x)) in Epstein’s axiomatization of two-valued sentential calculus,
could be proven from the others. Then, appropriate models establishing the indepen-
dence of the remaining set of axioms were found using William McCune’s program
MACE, which searches for finite models of sets of clauses.

We close this section by turning to questions concerning proof elegance. More than
occasionally a theorem has been proved, but the proof is far, far from elegant. It may
be much longer than need be, according to experience and intuition. It may rely on
formulas that are extremely complex, and, again, educated opinion suggests such is not
required. Among the other inelegant features that may be present is that of requiring
the use of some unwanted terms. A program such as OTTER has proved useful in all
cited areas, often finding a proof offering far more elegance than can be found in the
literature. We are content to cite but one example in this essay.

Meredith (1959) proved (in approximately 38 condensed detachment steps, making
extensive use of double negation) axiom MV5 of Ĺukasiewicz’s axioms for infinite-
valued sentential calculus from the remaining four axioms. Thus he established a
dependence within LĹukasiewicz’s axiomatization. Because of our emphasis on the
avoidance of double negation and the conjecture that its avoidance might enable a
reasoning program to find shorter proofs, we embarked on an automated search for
a shorter, double-negation-free proof of the dependence of axiom MV5. Success was
ours: OTTER produced a 32-step proof, and one in which double negation is absent,
thus addressing two elements of increased elegance.

For the student or researcher who might enjoy a question focusing on finding a possi-
bly shorter proof, we suggest the Meredith single axiom. Can one find a proof relying on
40 or fewer applications of condensed detachment showing that the Meredith axiom suf-
fices for all of two-valued sentential calculus? To make the open question more precise,
the sought-after proof must complete with the deduction of one of the known axiom
systems for that area of logic. If one wishes an open question focusing on the need for
double negation, the following might be of interest. In infinite-valued sentential calculus,
can one find a proof free of double negation that establishes the deducibility from either
the four independent or five dependent axioms for that area of logic of the distributive law
P(i(i(n(x),n(i(i(n(y),n(z)),n(z)))),n(i(i(n(i(n(x),y)),n(i(n(x),(n(x),z))),n(i(n(x),z))))))? This
question can be rephrased, asking that one prove without the use of double negation that
x or (y and z) implies (x or y) and (x or z), where and is defined as earlier but or is defined
as i(n(x),y).

4 Myths, Mechanization, and Mystique

The myths that surround the mechanization of inference rule application and proof
finding are many. Utter pessimism: effective mechanization is not possible, especially in
the context of answering deep, open questions. Self-worship: if effective mechanization
is possible, emulation of the minds of masters is required. Uselessness: one cannot learn
from proofs produced from a computer program. The 0/1 myth: either the program
completes the given assignment, or absolutely nothing is produced of value. Fear:

LARRY WOS AND BRANDEN FITELSON

720

reasoning programs will eventually obviate the role of logicians, mathematicians, and
the like.

Other than the last given myth (which we shall dispatch shortly), this chapter pro-
vides some evidence and some clues that unmask each of the given myths and others
unnamed. Indeed, regarding the Utter pessimism myth, the list of open questions (some
of which remained open for many decades) that have been answered through heavy
reliance on automation is lengthy and continues to grow. As for the Self-worship myth,
the more successful and powerful reasoning programs clearly do not emulate person-
oriented reasoning. For but two examples, paramodulation (applied so effectively by a
computer for equality-oriented reasoning) is the type of inference rule that under-
standably is not used by unaided researchers, and instantiation, which is heavily used,
is not offered by the type of reasoning program in focus because it appears not to admit
effective control.

The Uselessness myth is quickly dispatched. Indeed, although we are far from expert
in the areas of logic that we have attacked with OTTER, we do continually learn from
the proofs it supplies and, sometimes, from its failures. Even more can, and sometimes
is, learned by a master examining the efforts of a reasoning program. Regarding the
0/1 myth, the output file that can be produced may offer a new key lemma and, even
better, may contain a proof that the skilled researcher was unable to find unaided. Even
if a proof of the desired type is not found, one can study the set of retained conclusions
resulting from an unsuccessful attempt and discover precisely what is needed to reach
the objective in the next automated attack.

As for the last myth, Fear, it is utter nonsense. The mind of the logician, mathe-
matician, or other scientist will never be replaced, only supplemented! The explanation
for the significant contributions to logic and mathematics resulting from the joint effort
of program and researcher rests to a great extent with the fact that the general
approach (as discussed in this chapter) taken by the more effective reasoning programs
differs sharply from that taken by the successful researcher. The two approaches com-
plement each other, and that is the key.

A mystique regarding the automation of reasoning still exists. For but one example,
the literature strongly suggests that the proof of numerous deep theorems requires the
use of double negation, which in fact is not the case, as shown with the use of OTTER.
Is it certain that such success (with the dispensing of double negation) rests with the
sharp increase in useful information when compared with total information that is
considered? For a second example, who would have thought possible that automated
reasoning would yield the answer to a deep question that had remained open since the
mid-1930s and that had defied fine minds (that included Tarski)? Specifically, McCune’s
program EQP – in approximately 10 CPU-days – found a proof showing that every
Robbins algebra is a Boolean algebra (McCune 1997).

Part of the mystique, as espoused throughout this chapter, rests with the intense
and explicit use of various types of strategy. We strongly conjecture that the successes
reported here, as well as numerous others not touched upon, would have been out of
reach without the program’s reliance on strategy. The formulation of some of the
strategies resulted directly from an attempt to answer, through automation, an
open question. Because we intend to continue to augment reasoning programs by
formulating new strategies and new methodologies, we ask assistance in accruing

THE AUTOMATION OF SOUND REASONING

721

new open questions to study. An effective way to convey questions to us is by e-mail:
wos@mcs.anl.gov.

Regarding source books and a program that might prove useful and intriguing, two
books provide much of what is needed. The first book (Wos and Pieper 1999) serves
well as a text, assumes no background, discusses various applications of automated
reasoning, offers numerous open questions for consideration, and includes a CD-ROM
on which one finds the program OTTER as well as various other useful files. In addi-
tion to logic and mathematics, the discussed practical applications include circuit
design and validation; the important use of automated reasoning for program verifi-
cation is not discussed. The second (two-volume) book (Wos and Pieper 2000) consists
of reprints of published papers that enable one to follow the development of the field
from the early 1960s to the late 1990s. The two books connect in a rather unusual
manner: The first contains a long chapter whose subsections each correspond to
one of the reprinted papers, giving an overview and appropriate problems. For
further information on automated reasoning at Argonne National Laboratory, see
http://www.mcs.anl.gov/AR/, which gives all of the needed pointers for new results,
for various neat proofs, and for puzzles.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Research,
US Department of Energy, under Contract W-31-109-Eng-38.

References

Epstein, R. (1994) The Semantic Foundations of Logic: Propositional Logics, 2nd edn. New York:
Oxford University Press.

Ĺukasiewicz, J. (1948) The shortest axiom of the implicational propositional calculus. Proceedings
of the Royal Irish Academy, 52A, 3, 25–33.

Ĺukasiewicz, J. (1970) Logistic and philosophy. In L. Borkowski (ed.), Jan Ĺukasiewicz: Selected
Works. Amsterdam: North-Holland (original work of Ĺukasiewicz published in 1930).

McCune, W. (1994) OTTER3.0 Reference Manual and Guide. Technical report ANL-94/6. Argonne,
IL: Argonne National Laboratory.

McCune, W. (1997) Solution of the Robbins problem. Journal of Automated Reasoning, 19,
263–76.

Meredith, C. A. (1953) Single axioms for the systems (C,N), (C,O), and (A,N) of the two-valued
propositional calculus. Journal of Computing Systems, 1, 155–64.

Meredith, C. (1959) The dependence of an axiom of Ĺukasiewicz. Transactions of the American
Mathematical Society, 87, 54.

Rose, A. and Rosser, J. B. (1959) Fragments of many-valued statement calculi. Transactions of the
American Mathematical Society, 87, 1–53.

Wos, L. and Pieper, G. W. (1999) A Fascinating Country in the World of Computing: Your Guide to
Automated Reasoning. Singapore: World Scientific.

Wos, L. and Pieper, G. W. (2000) Collected Works of Larry Wos. Singapore: World Scientific.

LARRY WOS AND BRANDEN FITELSON

722

Further Reading

We recommend the following, listed in order of importance:

Wos, L. (1996) The Automation of Reasoning: An Experimenter’s Notebook with OTTER Tutorial.
New York: Academic Press.

Wos, L. (1993) The kernel strategy and its use for the study of combinatory logic. Journal of
Automated Reasoning, 10, 287–343.

Wos, L. (1995) Searching for circles of pure proofs. Journal of Automated Reasoning, 15, 279–315.
Boyer, R. S. and Moore, J. S. (1998) A Computational Logic Handbook, 2nd edn. New York:

Academic Press.
McCune, M. and Padmanabhan, R. (1996) Lecture Notes in Computer Science, vol. 1095:

Automated Deduction in Equational Logic and Cubic Curves. New York: Springer.

THE AUTOMATION OF SOUND REASONING

723

