
Part XI

INDUCTIVE, FUZZY, AND QUANTUM
PROBABILITY LOGICS





565

35

Inductive Logic

S T E P H E N G L A I S T E R

All inductive logicians aim to construct a formally articulated theory of good amplia-
tive (non-deductive) inference that parallels existing formal theories of good deductive
inference. They disagree, however, about the extent and respects of that parallel, as well
as about the exact formal resources that should be brought to bear. What I will call Good
Old-Fashioned Inductive Logic (GOFIL) holds that the parallels between deductive logic
and inductive logic are straightforward and extensive. (‘GOFIL’ and related acronyms
follow a well-known model due to John Haugeland.) On this view inductive logic, like
deductive logic, studies arguments, but whereas deductive logic studies the relation of
deductive validity between an argument’s premises and its conclusion, inductive logic
studies the degree to which those premises support or confirm that conclusion.

The obvious instrumentality with which to articulate this system of degrees is prob-
ability. The basic properties of probability are codified by axiomatizations such as those
of Kolmogorov and of Renyi. Advocates of GOFIL, together with many statisticians and
essentially all philosophers of probability, hold that it makes perfectly good sense to ask
– even that it is essential we ask – what probability is beyond those basic formal prop-
erties (Salmon 1967; Walley 1991; Hájek 1997). Taking existing uses of probability
concepts in both commonsense and science as the first word in matters of extra-formal
interpretation, GOFIL suggests that one thing probability is, particularly in epistemic
contexts, is a parameter expressing degree of confirmation. That is, the probability 
P(B | A) that conclusion proposition B is true given premise proposition A (= «Ai if the
argument has multiple premises) is understood as a measure of the objective, logical
degree to which A supports or confirms B. GOFIL therefore sponsors a so-called ‘logical’
interpretation of (two-place) probability (Keynes 1921; Jeffreys 1957; Carnap 1962).
Since Carnap’s version of GOFIL is the most developed and influential we will concen-
trate on that account. In section 1, then, we review the principal achievements of and
challenges faced by GOFIL á là Carnap.

Many of GOFIL’s achievements are detachable from that program’s commitment 
to a logical interpretation of probability. In section 2, we survey the reincarnation of
GOFIL in the context of a subjectivist interpretation of probability: a development we
will call Subjectivist Inductive Logic (SIL).

SIL rejects GOFIL’s logical account of probability, but it largely perpetuates GOFIL’s
basic conception of inductive logic as a matter of articulating standards of coherence



and consistency that can be used to assess particular inferences or inference forms. A
more radical departure from GOFIL refocuses attention away from issues of coherence
and consistency, and towards the study of various sorts of logical guarantees of con-
vergence to the truth. We discuss this New-Fangled Inductive Logic (NFIL) in section 3.

1 Good Old-Fashioned Inductive Logic (GOFIL): Carnap’s Program

Carnap developed his account of inductive logic through a long series of important
publications over 30 years, reaching an apex of both generality and compatibility with
standard probabilistic terminology in the posthumously published Carnap (1971,
1980). In this section, we will employ essentially the terminology used in this later
work.

Formal preliminaries

Let a family of properties, {F1, . . . , Fk} be a set of properties that are pairwise exclusive
and jointly exhaustive. Each property in the family thus functions as a complete char-
acterization of an individual in the logic. An atomic proposition is a proposition that
ascribes one of the properties, Fi, to an individual, for example F3b. A sample proposition
is a finite conjunction of atomic propositions in which each atomic proposition involves
a different individual, for example F3b « F3c « F4d. n(E) or n (if the reference is clear)
is the total number of individuals involved in E, and ind(E) is the set of individuals
involved in E. Let the empty sample proposition be the necessarily true proposition, W.

ni(E) or just ni (if the reference is clear) is the number of individuals to which E
ascribes property Fi, and n(E) or n (if the reference is clear) is the frequency vector 
·n1, . . . , nkÒ for E. The number of possible frequency vectors for a sample proposition 

E is , where n = n(E) = Sni. �Note that � The number of

possible sample propositions involving exactly ind(E) with a given frequency vector 

n is given by the multinomial coefficient for that vector, If there are q 

individuals overall then there are distinct sets of n individuals available to be

partitioned by n, hence possible realizations of n in that population.

Let P be a probability function on the algebra of atomic propositions for countably
many individuals. A singular predictive inference is a conditional probability, P(Fia | E),
where E is a sample proposition that does not involve individual a. A rule of succession
is a general formula for P’s singular predictive inferences. We define the unconditional
probability P(Fia) as P(Fia | E = W). Unconditional probabilities for arbitrary sample
propositions follow immediately, for example:

P(Fia « Fjb) = P(Fia) · P(Fjb | Fia)
P(Fia « Fjb « Fkc) = P(Fia) · P(Fjb | Fia) · P(Fkc | Fia « Fjb)
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and so on. All other unconditional probabilities follow by additivity of the probabilities
of these basic possibilities.

P is exchangeable just in case the probabilities of sample propositions are functions 
of their frequency vectors, that is P(E) = P(E¢) if n(E) = n(E¢). Put another way, P is
exchangeable just in case one doesn’t change probabilities merely by altering which
individuals have which properties.

To the continuum and beyond

Carnap’s first major work in inductive logic (Carnap 1962) culminates in a long appen-
dix on a particular logical probability or degree of confirmation function, c*. The rule
of succession for c* is

that is where E involves n individuals of which ni have property Fi.
C* gives equal prior probabilities for an individual having an arbitrary property, that

is for all Fi, c*(Fia | W) = 1/k, since ni = n = 0. This implies both that each possible fre-
quency vector for the whole population is allotted the same prior probability, and that
that allotment is split evenly among its realizations. For example, when the universe 
of individuals comprises two coin tosses, a and b, and the family of properties is just
{F1 = ‘heads’, F2 = ‘tails’} then the c* priors are:

c*(F1a « F1b| W) = c*(F2a « F2b| W) = 1/3
c*(F1a « F2b| W) = c*(F2a « F1b| W) = 1/6

That is, the outcomes of 0, 1, and 2 heads are given equal weight, notwithstanding
that there are more ways to get exactly 1 head.

Cases such as this almost immediately start one worrying that an alternative to c*
that assigns equal prior probability (here 1/4) directly to all the possible realizations of
all frequency vectors might be preferable. Carnap (1962) called this alternative, c†, and
noted that Peirce, Keynes, and Wittgenstein had all succumbed to its charms. In a tour
de force, however, Carnap showed that the rule of succession for c† is:

That is, c† makes a certain sort of empirical learning impossible: its singular predictive
inferences ignore all observed frequency information.

Whence comes the appeal of c†, say in the coin-tossing case above, if it is, in the
abstract, inductively catastrophic? Evidently its appeal in the case at hand is grounded
in the fact that we are jumping to the conclusion that the coin to be tossed is (close to)
objectively fair. If we assume this (or indeed any other particular bias for the coin) then
there is an important sense, underlined by Carnap’s result for c†, in which we already
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know everything there is to know about the coin we are tossing. The exact sequence of
heads and tails remains to be determined, of course, but that’s just the unfolding of a
chance process: it’s ‘whatever happens.’ And if we know the chance parameters for the
overall process then no stage of the unfolding chance process tells us anything about
any other stage of that process. c† is not an inductive catastrophe in the case of tossing
a coin with known bias, rather it’s a legitimate expression of the fact that there’s
nothing left to learn about the case at hand.

Reflecting on c† in this way helps us see that the basic inductive problem for Carnap
is equivalent (given two outcomes) to trying to figure out the bias of a coin from the
actual outcomes of a series of tosses. From this perspective, the degeneracy of c† is just
that it is appropriate only for a case in which exactly that inductive problem has already
been solved. In actual empirical applications, moreover, we are always open to revisit-
ing our estimates of a coin’s bias – a string of 1000 heads from a coin we believed fair
would always give us pause. It follows that c† is at best a contextually specific, conve-
nient approximation; one which Carnap himself analogizes to the use of 22/7 to
approximate p.

At the opposite extreme from c† is the so-called ‘straight rule,’ csr. This alternative to
c* ignores all prior probability information and simply predicts the continuation of the
components of the sample proposition’s frequency vector into the future, that is:

We can think of csr as at one end of a spectrum, giving no weight to the prior proba-
bilities, c† at the other end, giving incomparably great weight to the priors, and c* as
somewhere in between. Carnap (1952) makes the obvious weight parameter explicit,
yielding the following family of rules of succession:

where 0 £ l £ •. Since cl has continuum many instances, Carnap called this system
the ‘Continuum of Inductive Methods.’ Cl reduces to csr, c*, and c† when l is 0, k, and
• respectively.

Carnap (1980) generalizes still further, dropping the requirement of uniformity of
the prior probability, gi, that an individual will have property Fi:

where l is positive and finite and Sgi = 1. (Carnap (1980) analyzes extreme rules such
as csr and c† only in the limit, as l approaches 0 and • respectively.) We can think of
the probabilities generated by this sort of rule as a matter of first augmenting the n-
membered sample population with a virtual population comprising l individuals with
frequency vector ·lg1, lg2, . . . , lgkÒ, then recalculating the relative frequencies from
there. C* is the case where each property gets exactly one virtual representative (Jeffrey
1980: 2–3).
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Carnap presented many different sets of qualitative conditions on P over the years,
each of which he intended to be sufficient for his favored family of logical probabilities
at the time. Carnap (1980: section 19) proves that the following relatively sparse group
of conditions is sufficient for the l–g-continuum of inductive methods:

(l–g1) P is exchangeable.
(l–g2) P is regular: P(E) > 0 for all E.
(l–g3) Strict Instantial Relevance: P(Fib | Fia) > P(Fib).
(l–g4) Sufficientness: P(Fia | E) is a function just of n and ni.

Note that csr = c0,g conflicts with (l–g2) since if ni(E) = 0 then c0,g (E) = 0, and c•,g con-
flicts with (l–g3) since c•,g (Fib | Fia) = c•,g (Fib). Lastly, note that (l–g4) is vacuous if
there are only two possible properties, so that, strictly speaking, the given postulates
only imply the l–g-continuum for k ≥ 3. Carnap saw the problem, and solved it – 
inelegantly – by adducing a quantitative axiom of linearity to cover the k = 2 case. We
set aside this unfortunate wrinkle in Carnap’s approach here.

The basic problem

Before discussing relatively technical objections to and further developments of
Carnap’s program, it is worth asking about the extent to which that program succeeds
in meeting its original goals. Recall that the basic suggestion of GOFIL was that one
thing probability could be, particularly in epistemic contexts, is a parameter register-
ing degree of confirmation.

Now if, say, c* had emerged as a uniquely compelling inductive method then it would
have been possible for Carnap to declare victory: to say that probability in many epis-
temic contexts just is c*. But if, as Carnap clearly believed by 1952, c* is not uniquely
compelling so that, so to speak, degrees of confirmation are many while probabilities are
one, then the logical interpretation of probability has to be abandoned. P(B | A) can’t just
be the degree to which A confirms B since degree of confirmation turns out to have addi-
tional argument places that probability lacks. Moreover, Carnap agrees that the value of
l “is fundamentally not a theoretical question” but a “practical decision,” albeit one
which can be importantly informed by “theoretical results concerning the properties of
the various inductive methods” (Carnap 1952: 53). The l–g-continuum, of course, only
expands the role of practical decision making. But then, whatever else he might have
done, Carnap hasn’t provided a logical interpretation of (two-place) probabilities, fixed
as relations of entailment are fixed, simply by the nature of the underlying field of propo-
sitions. And assigning all particular degrees of support only relative to l- and g-values
that are themselves matters of decision raises the specter of circularity, or at least of a
kind of holism about probability (i.e. if those decisions, as it’s natural to suppose, already
involve probabilistic reasoning of some kind). This is unpromising ground on which to
try to erect a strictly logical interpretation of probability.

From the late 1950s onward, and especially in Carnap (1963), Carnap strongly
emphasizes the role of degrees of confirmation in helping determine expected utilities,
fair betting quotients, and so on. It is not clear whether Carnap intended this new
emphasis to solve or to concede defeat by the problems raised in this section. Whatever
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Carnap may have intended, strongly emphasizing betting behavior and decision
making invites exploration of how much of GOFIL can be retained given a subjectivist
interpretation of probability. And historically this path has been very popular. Indeed,
in one obvious respect, GOFIL apparatus immediately acquires a new luster in a sub-
jectivist setting: symmetry arguments and principles that are endlessly controversial
when wielded as additional universal postulates to help fix logical probabilities, are 
necessarily less objectionable when employed opportunistically, as tools for forming
subjective probability models of particular cases. We consider subjectivized inductive
logic in detail in section 2.

Other problems and developments

In this section, we briefly review some relatively technical problems for GOFIL.

Confirming universal generalizations
In domains where there are infinitely many individuals all of Carnap’s inductive
methods give zero prior probabilities (hence – except for csr – also zero posterior proba-
bilities on finite evidence) to universal generalizations (UGs). One response is simply to
accept the consequence, fashioning the point either as a sobering reminder of how far
the literally universal outstrips our abilities to probabilize (R. Price, De Morgan, Jeffrey),
or as a demonstration of how far the mathematics of infinity takes us away from the
sorts of epistemic contexts that matter (Ramsey, Savage, T. Fine). The other main
response is, of course, to try to modify Carnap’s apparatus to permit assigning positive
prior probability to UGs in infinite domains (and swifter confirmation in finite domains).
From a subjectivist perspective, the problem is no sooner stated than it is solved: simply
put finite probability where it’s needed and make appropriate adjustments elsewhere
(Jeffreys and Wrinch 1919; Earman 1992: 89–90). But how to justify this sort of
flexibility within a GOFIL setting?

Two attempts have been made to meet this challenge, both of which centrally involve
amending (l–g4) (actually both amendments address only the l-continuum, but 
the difference doesn’t matter here). Zabell (1997b) proposes the following minimal
modification:

(l–g4.1) P(Pia | E) is a function just of n, ni, except when E involves only a single
property.

and proves a remarkable theorem showing that essentially just exchangeability of P
determines both:

• the existence of prior and posterior probabilities for each UG, ("j)Fiaj;
• a formula that makes P(Fia | E) in these cases a weighted average of its l-continuum

value and the posterior probability for ("j)Fiaj.

The most extended response to the problem of confirming UGs within GOFIL is due 
to Hintikka and Niiniluoto (1980). The core of this response is the weakening of
(l–g4) to:
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(l–g4.2) P(Pia | E) is a function just of n, ni, and of the number of distinct prop-
erties not involved in E.

The thought behind the additional argument parameter here is that “it determines the
number of nonequivalent generalizations compatible with the sample” (Hintikka and
Niiniluoto 1980: 160). Coordinately, the underlying technical innovation of the so-
called H-N systems is to assign probabilities in the first instance directly to generaliza-
tions about which properties (and relations) are instantiated in a population (the
‘constituents’ of Hintikka (1966)). One can, it turns out, do this in a way that permits
(1) the calculation of all sample proposition probabilities, (2) positive probability for
UGs independently of the cardinality of the domain, and (3) much faster confirmation
of generalizations in finite domains. Carnap’s l-continuum even emerges as the sole H-
N system in which UGs fail to receive positive probability in infinite domains (Hintikka
and Niiniluoto 1980: 173).

New properties/species
Carnap’s inductive methods (as well as the H-N systems) suppose that we know all the
basic properties, {Fi}, in advance. But this is deeply unrealistic: real-world inductions
involve learning about new types almost as much as they do learning about new tokens
(of pre-digested types). Zabell (1992, 1997a) shows how to make a Carnapian frame-
work more realistic, by allowing for singular predictive inferences about novel prop-
erties or species.

Suppose for ease of exposition that the observables are letters in the alphabet.
Evidently the frequency vector (from nA to nZ) for the sample of observations DFBBBAA,
·2, 3, 0, 1, 0, 1, 0, 0, . . . , 0Ò is not an appropriate statistic unless we possess a prior
enumeration of all 26 types. If we knew just DFBBBAA, then the only available fre-
quency vector would seem to be the vector comprising the frequencies of the actually
observed types (from nA to nF), ·2, 3, 1, 1Ò. We can further imagine interpreting the
vector in the following minimal fashion:

“fourth species observed showed up twice,” “third species observed showed up three
times,”. . . .

If we now suppose that possible observations are indexed by times {1, . . . , n}, then the
frequency vector just for observed types can be thought of as constituting a partition
p of the index set {1, . . . , 7}. We can now generate a higher-order statistic for a par-
tition corresponding to the frequencies of the frequencies in the partition of the index set.
Let aj be the number of types with j observed tokens, that is the number of j-membered
partition cells in the partition of the index set. For example, a1(DFBBBAA) = 2,
a2(DFBBBAA) = a3(DFBBBAA) = 1.

Let Pn be a random variable taking as values possible partitions of {1, . . . , n} and
let a = ·a1, . . . , anÒ be the partition vector for an n-membered sample, so that, for
example, a(DFBBBAA) = ·2, 1, 1, 0, 0, 0, 0Ò. Suppose finally that one has a probability
over the space of possible partitions of {1, . . . , n} and say that that probability is par-
tition exchangeable iff all partitions with the same partition vector are equiprobable, that
is P(Pn = p1) = P(Pn = p2) if a(p1) = a(p2), where p1 and p2 are partitions of {1, . . . , n}.
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Zabell (1997a) shows that a new, three-parametered continuum of inductive
methods is implied by partition exchangeability, and three other conditions. The first
two conditions are just partition counterparts of regularity (l–g2) and sufficientness
(l–g4). The final condition governs the probability that the next individual is of a novel
species:

(Z) P(en+1 Œ St+1 | ·n1, . . . , ntÒ) is a function just of the number of species already
observed, t, and the sample size, n.

See Zabell (1997a: section 2) for the new continuum of predictive probabilities itself.
For some of the relations between the new continuum and the H-N systems, see Zabell
(1992: 218).

Note finally that some authors (Salmon 1967; Fine 1973) have worried that
Carnapian degree of confirmation values are inappropriately sensitive to refinements
in the space of properties. Zabell’s work, however, appears to demonstrate one way in
which such sensitivity is not only appropriate but essential.

Analogy
Carnap’s inductive logic can be understood as importantly anti-analogical. Whereas
exchangeability implies that order of individuals is unimportant, proximity of individ-
uals in some ordering or metric is often taken to be a reasonable basis for inference.
Similarly, whereas sufficientness conditions insulate predictions about one type from
(frequency) information about other types, proximity of types in some ordering or
metric is often taken to be a reasonable basis for inferring features of one type from
another.

We briefly discuss the weakenings of exchangeability that are needed for models of
the first sort of analogical reasoning in the discussion of “De Finetti’s exchangeability
reduction” below. Notable attempts to model the second sort of analogy in a broadly
Carnapian spirit include Niiniluoto (1981), Constantini (1983), Kuipers (1984),
Skyrms (1993), and Maher (2000).

2 Subjectivized Inductive Logic (SIL): De Finetti Regnant

We observed in the section “To the continuum and beyond”, above, that Carnap thinks
of the basic inductive problem as analogous to trying to divine the bias of a coin from
an actual sequence of tosses. The crucial point is that the system being theorized about
is supposed, conditional on any particular bias value(s), to produce sequences of (objec-
tively) independent, identically distributed (same objective probabilities each time for
the different possible outcomes) trials.

This situation is one of the most well-studied problems in statistics, and particularly
in Bayesian statistics. From a Bayesian statistical perspective, the problem is just to
choose an appropriate prior probability on the possible values of the bias parameter so
that (1) computation of posteriors is easy, and (2) convergence to the true bias is guar-
anteed. Sometimes statisticians recommend a uniform or ‘flat’ prior for these purposes.
At least equally commonly, however, they allow any member of the family of priors that
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essentially share the functional forms of the likelihoods (i.e. the probabilities of sample
propositions given values of the relevant bias parameter(s)) as functions of the bias
parameter(s). Most distinguished are the so-called natural conjugate priors. (When the
product of the prior and the likelihood yields a posterior distribution in the same family
as the prior, the prior is said to conjugate with the likelihood function. When that prior
conjugates with that likelihood by essentially sharing its functional form then the prior
is natural.) If the system generating the sample is binomial, the natural conjugate priors
are the Beta distributions; if it is multinomial the natural conjugate priors are the
Dirichlet distributions. These distributions themselves have multiple parameters. If
these parameters have uniform values the resulting Beta and Dirichlet distributions are
said to be symmetric. Flat priors result if that uniform value is 1 (Festa 1993: chapter
6; Tanner 1996).

Remarkably, the flat prior corresponds exactly to Carnap’s c*, the symmetric natural
conjugate priors to the l-continuum, and the natural conjugate priors in toto to the
l–g-continuum. GOFIL subjectivized – SIL – just is Bayesian statistics. The great con-
necting principle here is Carnap’s requirement that degree of confirmation functions
be exchangeable, that is (l–g1). Famously, De Finetti (1937) proved that any infinite
sequence of random variables (i.e. one for each trial) for which every finite subsequence
is exchangeable (i.e. according to a subjective probability P over those infinite sequences
of trials) has a unique representation as a (possibly continuously) weighted average or
mixture of probabilities, each one of which makes the random variables (r.v.s) inde-
pendent and identically distributed (IID). We will state De Finetti’s result precisely just
for the binomial case:

DE FINETTI REPRESENTATION THEOREM Let {Xi}i=1
• be an infinite sequence of {0, 1}-

valued random variables with {Xi}n
i=1 exchangeable for each n (according to P); then

there is a unique probability measure m on [0,1] such that for each fixed sequence of
zeros and ones {ei}n

i=1 we have

where

This theorem, together with its relatives for sequences of multinomial r.v.s, real-valued
r.v.s (De Finetti 1937), and beyond (Hewitt and Savage 1955), implies that choosing c*,
cl, and cl,g as rules of succession is equivalent to choosing the various distributions (or
distribution families) mentioned above as mixing measures for the relevant version of
De Finetti’s Theorem.

Probabilities with respect to infinite sequences of random variables are sometimes
decried as unrealistic (Jeffrey 1992), and in part for this reason, finite exchangeable
sequences of r.v.s have also been extensively studied. Probabilities for such sequences
have unique representations as mixtures of (non-IID) hypergeometric sequences.
Extendibility of a finite exchangeable sequence to longer and longer finite exchange-
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able sequences, however, ensures convergence to representability by a mixture 
of IID sequences (Diaconis 1977). We set aside the case of finite exchangeability 
here.

Conditionalizing an exchangeable probability P on outcomes of trials leaves the sub-
sequences of remaining outcomes exchangeable. By Bayes’ theorem and the weak law
of large numbers, the weights of subsequent mixing measures gradually become
focused on a single IID sequence, corresponding to a single parameter value (or vector
of parameter values) unless one’s original mixing measure starts out strangely skewed
away from the true parameters of the system, a possibility that natural conjugacy
blocks (Diaconis and Freedman 1986). The power of De Finetti’s representation
theorem is that it shows how this elegant model of learning from experience is implicit
in little more than an assumption of a particular sort of subjective indifference or sym-
metry in one’s personal probabilities – exchangeability – together with the assumption
that new information is assimilated via conditionalization. As we saw above, De Finetti’s
theorem also clarifies how to understand Carnap’s efforts from a subjectivist stand-
point. Over and above identifying the exchangeable probabilities, Carnap’s various 
conditions can be seen as limning the properties of various families of prior mixing
measures. De Finetti’s result also suggests a more general perspective, according to
which to equip a subjective probability with a symmetry of some kind just is to endow
the agent in question with a conception of objective chance. This vision, which can be
pursued through more and more abstract symmetries, often with mathematical roots
independent of De Finetti’s work, for example in ergodic theory, has proved tantalizing
(Skyrms 1984: chapter 3, 1994).

De Finetti himself boldly made two further claims on behalf of his theorem (and its
supporting materials): that it paved the way for the complete elimination of objective
probability or chance parameters from statistics, and that it solved Hume’s problem of
induction. Let us briefly consider these claims in turn.

De Finetti’s exchangeability reduction

An immediate, technical obstacle to any general reduction of IID notions – objective
independence and objective equiprobability – to exchangeability is that if the infinite
sequence of random variables take values in very rich spaces then no representation in
terms of mixtures of sequences of IID trials for those r.v.s may be possible (Dubins and
Freedman 1979). But let us set aside this relatively technical worry here.

In many cases, one needs to construct a subjective probability for a situation or phe-
nomenon. And when the phenomenon is an infinite (or infinitely extendible) sequence
of random variables it makes sense to ask whether exchangeability or some other
related symmetry assumption is justified or reasonable. It certainly looks as though the
better part of that justification will be an appeal to background knowledge about the
phenomenon in question, to our understanding of how ‘coin toss’ – or ‘urn model’ –
like the phenomenon is. If the phenomenon is judged to be ‘coin toss’ – like – or in the
simplest case just is the tossing of a coin of some kind, then an IID sequence can be
reasonably expected, and, in effect, only the constant probability of success parameter
remains to be determined. But if we had some specific and contrary background knowl-
edge about the coin in question, for example if we knew that the coin was made of some
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highly unstable material such that every heads outcome increases the probability of
heads on the next toss, then it would be perverse to assume exchangeability. In this 
sort of case the order of outcomes matters and not just the frequency vector, hence
exchangeability is inappropriate.

Subjectivists have developed models of phenomena that objectivists would describe
as exhibiting various sorts of parameterized dependency, under the generic heading of
partial exchangeability (De Finetti 1938). The best explored of these is Markov exchange-
ability which focuses not on invariance of probabilities under permutation of trials (and
on frequency vectors) but on invariance under switching of sub-sequences of trials 
that share starting and ending points (and on vectors of initial states and transition
counts). See Diaconis and Freedman (1980) and Skyrms (1994: section 5) for further
discussion.

The work in this area is impressive, and constitutes an absolutely essential broad-
ening of the base for De Finetti’s reductive proposal. It seems unlikely, however, that it
does much more than push our basic objection back a step. Even with a wider arrange
of symmetries to appeal to, the subjectivist still seems to have to play catch-up with
respect to the objectivist. There are, after all, essentially unlimited forms of dependency
and objective eccentric character, so that it is hard to see how to avoid the conclusion
that symmetries in subjective probabilities are normally best seen as responses to back-
ground knowledge about objective symmetry and dependency in the target phenome-
non rather than the other way around. Compare Gillies (2000: 77–84) and Walley
(1991: 460–7).

Hume and grue again

We will approach the question of what De Finetti-style subjectivist inductive logic 
(SIL) has to say about Hume’s problem of induction anachronistically, via Goodman’s
new riddle of induction. Let something be grue just in case it is green before some future
date D or blue after D. Thus grass is grue before D, but not afterwards, and so on.
Goodman thinks that we all agree that “Regularity in greenness confirms the predic-
tion of further cases; regularity in grueness does not” (Goodman 1983: 82). Put prob-
abilistically and in terms of singular predictive inferences: observing green individuals
leading up to D-Day raises the probability that the next observed individual (i.e. on or
after D-day) will be green whereas it does not raise the probability that it will be grue.
Goodman wonders about the basis for distinctions of the green/grue kind. After
reproaching Hume for failing to provide such a basis, Goodman himself offers an
account that stresses the asymmetrical rootedness of the predicate ‘green’ in past lin-
guistic and inductive practice (Goodman 1983: chapter 4). Let us now see whether SIL
can do as well or better.

In Goodmanian D-day cases, the crucial ‘next observed individual’ is held fixed at D-
day while we haplessly pile up observations prior to its fatefully dated occurrence. An
alternative is to treat the next observed individual as a kind of moving target: as we pile
up additional observations, the next observed individual, like the proverbial ‘free beer
tomorrow,’ skips ahead always to be observed next. Call these the fixed target and
moving target conceptions of ‘the next observed individual’ respectively (Earman 1992:
section 4.7).
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Jeffreys (1957) showed that inductive skepticism about the character of the next
observed individual in the moving target case (‘moving target inductive skepticism’) is
almost impossible to maintain, since

if P(("i)Fai) > 0. This sufficient condition surely has broad skeptical appeal – a skeptic
should want to avoid having to be a priori certain that ($i)ÿFai. This is evidently a kind
of limiting answer to Hume but it is also a partial answer to Goodman. Since Jeffreys’s
result does not turn on what ‘F’ means, contrary to what Goodman might be taken to
suggest, grue is on the same footing as green in the moving target sense. No contra-
diction results from raising the probabilities of both ‘the next observed individual is
green’ and ‘the next observed individual is grue’ in the moving target sense, since their
rates of convergence to the limits in question can, and indeed must be, different
(Howson 1973).

Blunting inductive skepticism about the character of the next observed individual in
the fixed target case (‘fixed target inductive skepticism’ – clearly the principal case for
both Goodman and Hume) requires De Finetti-style symmetry assumptions, not just
ringing the changes on the probability calculus. The limit we wish to evaluate in this
case (where indices of the ai now range over both positive and negative integers) is:

It matters here what ‘F’ means since suppose dayn+1 is the D-day for the green/grue
divergence and that ‘F’ means ‘is green.’ Then

implies that

where ‘F*’ means ‘is grue.’
But if P is exchangeable with respect to a given property (i.e. for the infinite sequence

of r.v.s comprising the indicator functions for the presence of that property) then the
moving target and fixed target limits have to agree. The grue/green case therefore
makes for the following inconsistent triad: (1) P is exchangeable with respect to both F
and F*; (2) P(("i)Fai) > 0; and (3) P(("i)F*ai) > 0.

Basic openminded-ness militates against denying either (2) or (3), so exchangeabil-
ity with respect to at least one of F and F* must go. Thus, once we grant the inductive
skeptic a fixed target at which to aim, symmetries in our subjective probabilities are
going to constitute most of our (broadly subjectivist) answer to that skeptic. Those sym-
metries constitute the respects of resemblance or uniformity that we are expecting to
continue into the future, and those determinate expectations implicitly involve us in
ignoring countless other abstractly possible respects of resemblance. This is De Finetti’s
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answer to Hume. It is conditional or coherence-minded in much the same way that
Goodman’s ‘past practice’ answer is. There’s nothing in the theory of exchangeability
to say which, if any, properties we should find exchangeable, just as Goodman does not
presume to say what our past practices should be. De Finetti’s advantage over Goodman
is just the clarity afforded within a probabilistic framework for stating and relating the
conditions of induction precisely: Bayesian projectibility (Skyrms 1994) is alive and
well whereas Goodman’s theory of projectibility, as opposed to Goodman’s sensational
riddle, is a philosophical and logical back-water.

3 New-Fangled Inductive Logic (NFIL)

Logical accounts of the truth-conduciveness of methods of inquiry reached technical
and philosophical maturity in the 1980s and 1990s, building on the seminal work of
Putnam (1965) and Gold (1965). This New-Fangled Inductive Logic (NFIL) takes guar-
antees of different senses of convergence to the truth to be the primary object of logical
study. Considerations of coherence or consistency – probabilistic or otherwise – are dis-
tinctly secondary: they warrant study principally for whether they are likely to block,
slow down, or otherwise interfere with convergence to the truth. Our bare-bones treat-
ment of NFIL follows Kelly (1996: chapters 3 and 4).

Consider an idealized scientist trying to determine by passive observation whether
some hypothesis, h, is true. We represent the scientist’s background knowledge as a set
of possible worlds, K, in some of which h is true and in some of which h is false. We
suppose that any world in K produces a stream of data, e, of which the scientist scans
only the initial segment, e|n, up to the current stage, n. The scientist is, we will assume,
equipped with an inductive method, a, drawn from some larger set of methods, M, and
that the scientist conjectures something about the status of the h after each new data
point. We further assume that all of the worlds in K are exhaustively observable. This
allows us to identify worlds with their unique data streams, and hypotheses with sets
of data streams. Given these identifications, the truth of a hypothesis depends just on
the data stream: h is true on e just in case e Œ h. Lastly, we will assume that the data
types are natural numbers and sundry other symbols, which we can think of as codes
for more realistic sorts of discrete data types.

Let us now formulate four, increasingly weak senses in which inductive method a
may converge to a verdict of some kind.

(C1) a produces b by stage n on h, e iff a(h, e|n) = b
(C2) a produces b with certainty on h, e iff there is a stage n s.t. a(h, e|n) = !, 

a(h, e|n + 1) = b, and, for all m < n, 
a(h, e|m) π !

(C3) a produces b in the limit on h, e iff there is a stage n s.t., for all m ≥ n, 
a(h, e|m) = b

(C4) a approaches b on h, e iff for each rational s Œ (0, 1], there is a  
stage n s.t. |b - a(h, e|m)| < s, for all 
m ≥ n
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Intuitively speaking, (C1) is convergence by a deadline n, (C2) is convergence to when
one is first prepared to say (‘!’) that one has the answer, (C3) is convergence in the sense
of eventual stability in ones conjectures, and (C4) is convergence in the sense of getting
closer and closer to some value.

The three most general notions of success for a method a on h, e involve a conjec-
turing that h is true (‘1’) just in case h is true (verification), conjecturing that h is false
(‘0’) just in case h is false (refutation), and both (decision). We provide clauses for the
four notions of verification our four senses of convergence induce; clauses for refuta-
tion and decision are similar.

(C1v) a verifies h by stage n on e iff [a produces 1 at n on h, e ´ e Œ h]
(C2v) a verifies h with certainty on e iff [a produces 1 with certainty on h, 

e ´ e Œ h]
(C3v) a verifies h in the limit on e iff [a produces 1 in the limit on h, e ´ e Œ h]
(C4v) a verifies h gradually on e iff [a approaches 1 on h, e ´ e Œ h]

The reliability of an inductive method a is a matter of quantifying over the possible
worlds/data streams on which a succeeds, for example:

(C1vK) a verifies h by stage n given K iff for each e Œ K, a verifies h at n on e

and so on for the rest. We can also quantify over the range of hypotheses that method
a can assess reliably, for example:

(C1vKH) a verifies H at stage n given K iff for each h Œ H, a verifies h at stage
n given K

Finally, one can ascend to the level of inductive problem solvability by generalizing over
the collections of methods in M, for example:

(C3rKHM) H is refutable in the limit given K by a method in M iff there is an 
a Œ M s.t. a refutes H in the limit given K

One can now set about exploring all these notions using the technical palette of the
theory of computability and recursion theory. Elementary but important results given
no restrictions on M include:

• Verifiability, refutability, and decidability are equivalent for (C1) (Kelly 1996: 45),
but not for any of the weaker senses of convergence we have defined (Kelly 1996:
68). For example, the existential hypothesis that mass m is divisible is verifiable 
with certainty but not refutable (hence not decidable) with certainty, and the same
existential within the scope of a universal (e.g. the hypothesis that mass m is infi-
nitely divisible) is refutable in the limit but not verifiable (hence not decidable) in the
limit.

• The whole structure can be characterized topologically, roughly by mapping exis-
tential and universal hypotheses onto open and closed sets respectively (Kelly 1996:
85; see also Schulte and Juhl 1996).
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• Decidability in the limit and gradual decidability are equivalent (Kelly 1996: 67).
The class of hypotheses that are so decidable can be classified in the finite Borel hier-
archy as D2

B.

NFIL affords an important, abstract yet flexible perspective on inductive inference. It rein-
vigorates the question of whether conditional, coherence-based answers to Humean and
other skepticisms, are answers at all. If the coherencies insisted upon block us from reli-
ably getting to the truth there’s a clear sense in which they aren’t. NFIL also provides
some external check on what might otherwise look like relatively innocuous or ‘merely
technical’ assumptions. Consistency, countable additivity, consideration just of proper-
ties (monadic predicates), and so on, are often adopted fairly peremptorily both inside and
outside of the GOFIL/SIL tradition. But such assumptions may have hidden costs or be
providing illicit benefits, and NFIL promises to help us see clearly whether this is so
(Earman 1992: chapter 9; Kelly 1996: chapter 13). NFIL also has the peculiarly philo-
sophical virtue of making strange bedfellows: from its perspective SIL approaches tend to
look much more of a piece with traditional, justification-centered programs in episte-
mology than is usually allowed (see Earman 1992: 219). Our own view is that the ar-
ticulation of the NFIL perspective on induction – a perspective for which Ramsey calls in
the final two sections of his “Truth and Probability” – is a very positive development, but
only time will tell whether this view is correct. In any case, both in its ingenuity and its
contentiousness, we expect the future of inductive logic to resemble its past.
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