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Alethic Modal Logics and Semantics

G E R H A R D S C H U R Z

1 Introduction

The first axiomatic development of modal logic was untertaken by C. I. Lewis in 1912.
Being anticipated by H. McCall in 1880, Lewis tried to cure logic from the ‘paradoxes’
of extensional (i.e. truthfunctional) implication … (cf. Hughes and Cresswell 1968: 215).
He introduced the stronger notion of strict implication <, which can be defined with
help of a necessity operator � (for ‘it is neessary that:’) as follows: A < B iff �(A … B);
in words, A strictly implies B iff A necessarily implies B (A, B, . . . for arbitrary sen-
tences). The new primitive sentential operator � is intensional (non-truthfunctional): the
truth value of A does not determine the truth-value of �A. To demonstrate this it suf-
fices to find two particular sentences p, q which agree in their truth value without that
�p and �q agree in their truth-value. For example, it p = ‘the sun is identical with itself,’
and q = ‘the sun has nine planets,’ then p and q are both true, �p is true, but �q is
false. The dual of the necessity-operator is the possibility operator ‡ (for ‘it is possible
that:’) defined as follows: ‡A iff ÿ�ÿA; in words, A is possible iff A’s negation is not
necessary. Alternatively, one might introduce ‡ as new primitive operator (this was
Lewis’ choice in 1918) and define �A as ÿ‡ÿA and A < B as ÿ‡(A Ÿ ÿB).

Lewis’ work cumulated in Lewis and Langford (1932), where the five axiomatic
systems S1–S5 were introduced. S1–S3 are weaker that the standard systems of § 2.2,
but S4 and S5 coincide with standard S4 and S5 (for details on Lewis’ systems cf.
Hughes and Cresswell 1968: ch. 12; Chellas and Segerberg 1996). Lewis’ pioneer work
was mainly syntactic-axiomatic, except for the modal matrix-semantics (for details in
the ‘algebraic’ tradition, started by Lukasiewicz, cf. Bull and Segerberg 1984: 8ff). The
philosophically central semantics for modal logic is possible world semantics. It goes back
to ideas of Leibniz, was first developed by Carnap and received broadest acceptance
through the later work of Kripke. The actual world, in which we happen to live, is merely
one among a multitude of other possible worlds, each realizing a different but logically
complete collection of facts. The basic idea of possible world semantics as expressed by
Carnap (1947: 9f, 174f ) is:

(1) �A is true in the actual world iff A is true in all possible worlds.
‡A is true in the actual world iff A is true in some possible world.



Thus, the truth valuation of sentences is relativized to possible worlds (or just: worlds).
In order to obtain a recursive definition, the truth of modalized sentences (e.g. �A, ‡A)
must also be determined relative to possible worlds. Let W be a given set of worlds w,
w1 . . . Œ W; then (1) is rephrased as follows:

(1*) �A [or: ‡A] is true in a given w Œ W iff A is true in all [or some, resp.] 
w Œ W

What is the ontological status of possible worlds? Forbes (1985: 74) distinguishes
between three philosophical positions: (1) According to absolute realism, possible worlds
exist and are entities sui generies. Lewis (1973: 84ff ) has defended this position. (2) For
reductive realism, possible worlds exist but can be reduced to more harmless (e.g. 
conceptual or linguistic) entities. (3) For anti-realism, possible worlds don’t exist; so 
possible-world-sentences are either false or meaningless. While (1) and (3) are extreme
positions, some variant of position (2) is the most common view. Kripke (1972: 15), for
example, denies the ‘telescope view’ of worlds and conceives possible worlds as possi-
ble (counterfactual) states or histories of the actual world. (The ‘possible state’ – versus
‘possible history’ – interpretation is a further important choice; cf. Schurz 1997: 40f.)
Those who still regard Kripke’s counterfactual position as too problematic may alter-
natively conceive worlds as metalinguistic entities, namely as interpretation functions of
the object language (this was Kripke’s early view in 1959, whereas in 1963a he intro-
duced W as a set of primitive objects). Even more scrupulous, Carnap (1947: 9) had
identified worlds with object-language entities – his so-called state descriptions. Carnap’s
concept was generalized by Hintikka’s (1961: 57–9) to so-called ‘extended state
descriptions’ which in the terminology of the section below entitled “Axiomatic
Systems: Correctness, Completeness, and Correspondence” are nothing but worlds of
canonical models. In the upshot: possible world semantics does not force one into a par-
ticular metaphysical position.

A logically decisive but rarely discussed question is the determination of the set W
of possible worlds. There are two options:

C-SEMANTICS We identify W with the fixed set WL containing all worlds, or
interpretations, which are logically possible in the given language L. Then � is a
logically constant symbol with a logically fixed interpetation – that of logical necessity. A
(modal or non-modal) sentence is then defined as logically true iff it is true in all worlds
of WL.

K-SEMANTICS Alternatively, we consider W as a varying set of possible worlds, or
interpretations, which need not comprise all logically possible worlds. Then �, though
formally a logical symbol, has an implicitly varying interpretation (similar to " in first-
order logic because of the varying domain; cf. Schurz 1999). For example, if W contains
all logically possible worlds, then � means ‘logically possible,’ while if W contains only
all physically possible worlds, then � means ‘physically possible.’ In this setting, we
count a sentence as logically true only if its truth does not depend on such special
choices of W; thus we consider a (non-modal or modal) sentence as logically true iff it
is true in all worlds w Œ W for all sets of possible worlds W.
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C-semantics is the semantics of Carnap (1946: 34; 1947: 9f, 174f ). It leads to a modal
logic which is called C in Schurz (2000). C is stronger than S5 and exhibits non-
classical features such as failure of closure under substitution (in C, ‡p is a logically true
for every propositional variable p, but ‡(p Ÿ ÿp) is logically false), or axiomatization by
non-monotonic rules (if A is not a C-theorem, then ‡ÿA is a C-theorem; cf. Schurz 2000
and Gottlob 1999). These are largely ignored facts, due to certain confusing historical
peculiarities, for example that Carnap (1946) himself had announced to have obtained
Lewis’ system S5. But this result was based an ad hoc deviation: in his modal proposi-
tional logic, Carnap restricts the logical truths of C to the subclass of those formulas
which are closed under substitution (1946: 40, D4-1) and shows that the so restricted
class of theorems is equivalent to Lewis’ S5. For further details see Hendry 
and Pokriefka (1985) and Schurz (2000), who defends C in spite of its non-classical
features.

K-semantics has been introduced by Kripke (1959, 1963a, 1963b), whose papers
have opened the highway to the modern modal logicians’ industry. As proved by Kripke
(1959), K-semantics leads exactly to the system S5 (similar results were obtained by
Hintikka (1961) and Kanger (1957a), not to forget Prior (1957), the founder of tense
logic). K-semantics leads to modal logics which enjoy all classical properties of logics;
on the cost that standard modal logics do not contain non-trivial possibility theorems
(cf. Schurz 2000, theorems 3 + 4). Apart from this insufficiency, the theorems of S5
are rather strong: for example for every purely modal sentence A (each atomic subfor-
mula of A occurs in the scope of a modal operator), �A ⁄ �ÿA is S5-valid. The crucial
step which utilized K-semantics for weaker systems and added an almost unlimited
semantical flexibility to K-semantics was the introduction of the so-called relation R of
accessibility, or ‘relative possibility,’ between possible worlds, independently by Kanger
(1957a), Hintikka (1961) and Kripke (1963a). Thus, w1Rw2 means that world w2 is
accessible from (or possible with respect to) w1, and the refined modal truth clause goes
as follows:

(2) �A is true in a given w Œ W iff A is true in all w* such that wRw*.
‡A is true in a given w Œ W iff A is true in some w* such that wRw*.

By varying structural conditions on the relation R (e.g. reflexive, transitive, symmetric)
one gets different modal logics, among them the standard systems T, S4, and S5. A
multitude of similar results were produced in the following decades, with outstanding
modal logicians of the ‘2nd generation’ such as Lemmon and Scott, Segerberg or Fine,
to name just a few. While C-semantics was almost completeley neglected, K-semantics
dominated the development of modal logic, whence the remaining sections focus on K-
semantics. Due to K-semantical flexibility, various new philosophical interpretations of
the modal operator have been discovered. For example, in systems weaker than T, the
modal operator may be interpreted as ‘it is obligatory that . . . ,’ which leads to Kripkean
semantics for so-called deontic logics, or as ‘it is believed that. . . . ,’ which brings us into
epistemic logic, etc. (see Gabbay and Guenthner 1984, and ch. XIII of this volume). This
development led to a broader understanding of ‘modal logic’ as the logic of intensional
propositional operators, while the narrow meaning of modal logic as the logic of neces-
sity and possibility is expressed in the specification ‘alethic’ modal logic.
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So far we have discussed only modal propositional logic – from now on: MPL. Many
more difficulties are involved in modal quantificational (or predicate) logic – from now on:
MQL. Here we have, besides W and R, a domain D of individuals (i.e. objects). Here we
have two major choices.

CHOICE 1 Should we assume that singular terms denote the same object in all possible
worlds (rigid designators), or that their reference object varies from world to world (non-
rigid designators)?

CHOICE 2 Should we suppose that every object in D exists necessarily, that is exists in
all possible worlds (constant domain), or should we better admit that some individuals
may exist in one world without existing in another world (varying domains)?

Until today the difficulties connected with these choices have not been completely
solved.

Quine’s famous attack on the reasonableness of ‘de re’ modalities in 1943 started
the well-documented debate on these choices (see Linsky 1971). A formula is called
modally de re (in the ‘strong’ sense) iff an individual constant or variable in A occurs
free in the scope of ‘�’; otherwise it is called de dicto (Fine 1978: 78, 135, 143; Forbes
1985: 48f ). For example, �Fa and $x�Fx are de re, while �$xFx is de dicto. The crucial
semantical property of de re formulas is that their semantic evaluation requires an iden-
tification or correlation of objects across different worlds. For example, $x�Fx says that
in our world there exists an individual which in all possible worlds has property F – in
other words, F is an essential (i.e. necessary) properties of this individuals. Hence we
assume that an object of our world – or at least some identifiable correlate of it – exists
in all other possible worlds. In contrast, �$xFx merely asserts that in all possible worlds
some individual exists which has property F; this does not presuppose any correlation
between individuals in different worlds. Thus, the semantical question of fixed versus
varying domains and rigid versus nonrigid designators does not concern de dicto but
only de re sentences.

Quine (1943) has argued that the reference of singular terms depends on contingent
facts, whence modal contexts are opaque: substitution of identicals fails in them. In his
famous example, both ‘�(9 > 7)’ and ‘9 = the number of planets’ are true, but ‘�(the
number of planets > 7)’ is obviously false. Quine concludes that modal de re statements
lack clear meaning. Ruth Barcan-Marcus, who developed Lewis-style MQLs in 1946,
gave a profound defence of MQL against Quine’s attack. In 1960 Barcan-Marcus
emphasized that the failure of substitution of identicals (a = b) … (A[a] ∫ A[b])) in MQLs
does not deprive de re sentences from clear meaning. She also shows that substitution
of necessary identicals (�(a = b) … (A[a] ∫ A[b])) still holds. In (1963), she argued that
the reference of proper names – in contrast to definite descriptions – should indeed be
regarded as the same across all possible worlds. In a modified form, this thesis was
defended by Kripke (1972); he suggested the name ‘rigid designator’ and made it
prominent, especially the connected thesis of necessities aposteriori (a = b … �(a = b); cf.
1972: 35–8).

Apart from Carnap’s early work, the first semantically interpreted MQL-S5 system
was developed by Kripke (1959), who assumes rigid designators and constant domain.
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Rigid designators are axiomatically reflected in the two theorems (ÿ)x = y … �(ÿ)(x =
y). Constant domains gets axiomatically cashed out in the Barcan formula BF: "x�A
… �"xA (introduced by Ruth Barcan 1946). Neither BF nor its converse cBF: �"xA
… "x�A are especially plausible; but varying domains cause drastic difficulties (see
below, “Nonrigid designators, counterpart theory, and worldline semantics”). A 
comparatively simple system based on varying domains and rigid designators was
developed by Kripke (1963b), on the cost of restricting necessitation rule. Hintikka
(1961: 63f ), argues in favor of varying domains and nonrigid designators (see also
Hughes and Cresswell 1968: 190). Later, Lewis (1968) argued that individuals at dif-
ferent worlds can never be identical, but can merely be so-called counterparts of each
other. His important philosophical point is that in order to avoid Quine’s de re skepti-
cism, it is not necessary to assume rigid designators; it suffices to assume the existence
of a counterpart relation. To says that F is an essential property of a (�Fa) means in
Lewis’ theory that all counterparts of a in all possible worlds have property F (Lewis
1968: 118). Thus, although Kripke (1972) critizices Lewis, both agree in their essen-
tialism, that is in their optimistic view about de re modalities.

The metaphysically significant alternative to both Kripke and Lewis is de re 
skepticism. The de re skeptics doubt that identifications or correlations of objects across
possible world are an intelligible concept. Von Wright (1951: 26–8) suggested that in
a satisfying modal logic all de re modalities should be eliminable in favor of de dicto
modalities (see Hughes and Cresswell 1968: 184ff ). This position was reconstructed as
the position of ‘anti-Haecceitism’ by Fine (1978). According to its basic idea, the
naming of individuals in possible worlds rests on purely conventional grounds. Thus,
in an ‘anti-Haecceitist’ possible world model the accessible worlds should be closed
under local isomorphisms w.r.t. their domains of individuals; Fine calls such possible
world models homogeneous (1978: 283). A singular necessity statement �Fa is true in
a world w of a homogeneous model only if its universal closure "x�Fx is true, too. Fine
(1978: 281) proves that the quantificational system S5 + H is complete for the class of
homogeneous possible world models. This system is obtained from S5 by adding all "-
�-closures of axiom H: (Dif(x1, . . . , xn) Ÿ �A) … �"x1 . . . "xn(Dif(x1, . . . , xn) … A),
where Dif(x1, . . . , xn) =df Ÿ {xi = xj: 1 £ i < j £ n} and A’s free variables are among x1,
. . . , xn.

2 Modal Propositional Logics (MPLs)

Language

In what follows, capital Latin A, B . . . will vary over formulas of the object language
and capital Greek G, D, . . . over sets of them. F will always denote a frame and M a
model, F a set of frames and M a set of models, W a possible world set, R the accessi-
bility relation, and V a valuation function. The letters w, u, v will range over possible
worlds (all symbols may also be used in an indexed way). We use all standard symbols
of informal first-order logic and informal set theory, which forms our metalanguage (see
van Dalen et al. 1978); in particular fi is the implication sign of the metalanguage.
Our object language is L, the language of MPL. It contains as nonlogical symbols a
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denumerably infinite set of propositional variables P, and as primitive logical symbols
the truth-functional connectives ÿ (negation), ⁄ (disjunction) and the necessity 
operator �. The other truth-functional connectives Ÿ (conjunction), … (material 
implication), ∫ (material equivalence), T (Verum), ^ (Falsum) and the possibility oper-
ator ‡ are defined as usual (A Ÿ B =df ÿ(ÿA⁄ÿB), A … B =df ÿA ⁄ B, A ∫ B =df (A … B) Ÿ
(B … A), T =df p⁄ÿp, ^ =df pŸÿp, ‡A =df ÿ�ÿA). L is identified the set of its (well-formed)
formulas, that is sentences, which are recursively defined as follows: (1) p Œ P fi p Œ L,
(2) A Œ L fi ÿA Œ L, (3) A, B Œ L fi (A ⁄ B) Œ L, (4) A Œ L fi �A Œ L (nothing else).
P(A) = the set of propositional variables in A.

Possible Worlds Semantics

A frame is a pair F = ·W,RÒ where W π ∆ (a nonempty set of ‘possible worlds’) and R Õ
W ¥ W (the accessibility relation; uRv abbreviates ·u,vÒ Œ R). A model for L is triple M
= ·W,R,VÒ where ·W,RÒ is a frame (we say that M is based on this frame) and V: P Æ
Pow(W) is a valuation function which assigns to each propositional variable p Œ P the
set of worlds V(p) Õ W at which p is true (‘Pow’ for ‘power set’). We also write WF, RF

to indicate that W and R belong to F; and likewise for WM, RM and VM. The assertion
‘formula A is true at world w in model M’ (where w Œ WM) is abbreviated as (M,w) |= A
and recursively defined as follows: (1) (M,w) |= p iff w Œ V(p); (2) (M,w) |= ÿA iff not 
M |= A, and M |= A ⁄ B iff M |= A or M |= B; finally (3) (M,w) |= �A iff for all u Œ W such
that wRu, (M,u) |= A. Sentence A Œ L is defined as valid in model M, in short: M |= A, 
iff A is true at all worlds of M. The set of worlds verifying A in model M is also written
as ||A||M and considered as the proposition expressed by the sentence A in model 
M. Formula A is valid on a frame F, in short F |= A, iff A is valid in all models based 
on F. Formula A is valid w.r.t. (with respect to) a class of models M, in short M |= A, or
w.r.t. a class of frames F, in short F |= A, iff A is valid in all M Œ M, or on all F Œ F,
respectively. Analogously, a formula set G is valid in a model M, M |= G, iff all formulas
in G are valid in M; analogously for validity of G on F, w.r.t. M, and w.r.t. F. A formula
set G Õ L is said to be (simultaneously) satisfiable in a model M (or: w.r.t. a model-class
M) iff all formulas in G are true at some world in M (or: at some world in some M Œ M,
respectively), and G Õ L is (simultaneously) satisfiable on a frame F (or: w.r.t. a frame-
class F ) iff G is satisfiable on some model based on F (or: in some model based on some
F Œ F ).

Logics can be defined in a semantical way (this section) and in an axiomatic-
syntactical way (next section). Let M(F ) denote the class of all models based on some
frame in frame-class F, and call a model class M frame-based iff M = M(F) for some F.
Frame classes are defined by purely structural conditions on R and allow all possible
valuation functions. In contrast, not-frame-based model classes are defined by restric-
tions on the valuation function. A logic, however, should admit all possible valuations
of its nonlogical symbols (see Schurz 1999). Therefore, frame-classes and frame-based
model classes are the philosophically more important means to characterize modal
logics, as compared to not-frame-based model-classes (such as the ‘general frames’ of
cf. ‘More metalogical results on PMLs’ below). Semantically, a MPL L can be defined as
the set of formulas which are valid w.r.t. a given class F of frames: L = L(F ) = {A: F |=
A}; the so-defined L is a ‘normal’ MPL. Formula A is said to be a valid consequence of
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G w.r.t. frame class F, in short G |=F A, iff for all worlds w in all models M based on some
frame in F, (M,w) |= G implies (M,w) |= A. If G |=F A, we also say that the rule G/A (read:
‘G, therefore: A’) is valid w.r.t. frame class F. Validity of a rule means truth-preservation.
It is important to distinguish this from the admissibility of a rule, which means validity-
preservation (Schurz 1994). In first-order logic, for example, Modus Ponens MP: A, A
… B/B is valid (truth-preserving) while Universal Generalization UG: A/"xA is merely
admissible (validity preserving). We call a rule G/A (semantically) admissible w.r.t. frame
class F, in short F-admissible, iff F |= G implies F |=. A rule is called frame-admissible iff it
preserves validity in every frame, and it is called model-admissible iff it preserves valid-
ity in every model. The reason for our definition of valid consequence (also called local
consequence by van Benthem 1983: 37f ) is that it implies the Deduction Theorem: G, A
|�F B fi G |�F A … B. This theorem does not hold for merely frame-admissible conse-
quences (which correspond to van Benthem’s ‘global’ consequence).

With FK for the class of all (Kripke) frames, the following implication relation holds:
G/A is FK-valid fi G/A is model-admissible fi G/A is frame-admissible fi G/A is FK-
admissible. We first consider the logic K (for Kripke) which is semantically defined as
the set of modal formulas which FK-valid, K = L(FK). Some terminology: A[B/C]
denotes the result of replacing some occurrences of subformula B in A by C (so, strictly
speaking, ‘A[B/C]’ varies over several formulas). A substitution function s:P Æ L sub-
stitutes arbitrary formulas s(p) for propositional letters p. The substitution instance s(A)
results from A by replacing every p Œ P(A) in A by s(p).

FK-valid theorems
Taut: Every tautology
K: �(A … B) … (�A … �B) K‡: (ÿ‡A Ÿ ‡B) … ‡(ÿA Ÿ B)
T: �T T‡�: ÿ‡^
C: (�A Ÿ �B) … �(A Ÿ B) C‡: ‡(A ⁄ B) … (‡A ⁄ ‡B)
M: �(A Ÿ B) … �A Ÿ �B M‡: ‡A ⁄ ‡B … (‡A ⁄ ‡B)

Further theorems
1. �A ⁄ �B … �(A ⁄ B),
2. ‡(A Ÿ B) … ‡A Ÿ ‡B,
3. �(A … B) … (‡A … ‡B),
4. �A Ÿ ‡B … ‡(A Ÿ B),
5. �(A ⁄ B) … ‡A ⁄ �B,
6. (‡A … �B) … �(A … B),
7. ‡(A … B) ∫ (�A … ‡B).

FK-valid rules
TautR – all tautological rules in particular MP: A, A … B/B.

Model-admissible rules
N: A/�B
E: A ∫ B / �A ∫ �B
RE: B ∫ C / A ∫ A[B/C]
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Further
All rules resulting from valid theorems by applying deduction theorem

A frame-admissible rule
Subst: A/s(A) for every s:P Æ L

PROOFS Exercise (see proof examples below). Hints: The tautological theorems and
rules hold because the clauses for truth-functional connectives are the same as in non-
modal logic. In other words, (classical) modal logics contain truth-functional logic. Rule
RE (‘replacing equivalents’) is a consequence of E (‘equivalence’) and proved by
induction on complexity of formulas. Rule N (‘necessitation’) and the principle K
(Kripke) are characteristic for normal logics validated by Kripke frames, while rule E and
principles M, C, and T are used to axiomatize the ‘weaker’ classical logics. Every �-
theorem has a ‡-dual which obtained by replacing ‘�’ by ‘ÿ‡ÿ’ and applying
tautological transformations. Note that � distributes over Ÿ in both directions (M, C),
but � distributes over ⁄ only in one direction (i); thus � behaves like an implicit
universal quantifier. The same relations hold, dually, between ‡ and ⁄ , Ÿ; so ‡ behaves
like an implicit existential quantifier.

PROOF OF VALIDITY OF (K) We prove|�FK �(A … B) … (�A … �B) by assuming, for an
arbitrary model M and world w in WM, that (a): (M,w) |= �(A … B), and (b): (M,w) |=
�A, and by proving that (a) and (b) implies (c): (M,w) |= �B. By (a) and truth clauses,
(M,u) |= A implies (M,u)|� B, for all u with wRu. By (b), (M,u)|� A holds for all u with
wRu. Therefore, (M,u) |= B holds for all u with wRu, which gives us (c). Q.E.D.

PROOF THAT N IS MODEL- (AND HENCE FRAME-) ADMISSIBLE By contraposition. Assume (for
arbitrary M) that M |π �A. Then there exists w Œ WM such that (M,w) |π �A and hence
u Œ WM with wRu such that (M,u) |π A. So M |π A. Q.E.D.

Syntactical substitutions are semantically mirrored by corresponding variations of the
valuation function. This is the content of the following substitution lemma: Define, for
arbitrary substitution function s and valuation function V, Vs(p) = V(s(p)), for all p Œ P;
and for given M = ·W,R,VÒ, let Ms = ·W,R,VsÒ; thus M and Ms are based on the same
frame. Then: For every A Œ L, M and w Œ WM: (M,w) |= s(A) iff (Ms,w) |= A

PROOF Exercise: By induction on formula complexity; (see, for example, van Benthem
1983: 27, Lemma 2.5).

PROOF THAT (SUBST) IS FRAME-ADMISSIBLE By contraposition. Assume, for arbitrary F =
·W,RÒ and s, that F |π s(A). Thus there exists M = ·W,R,VÒ based on F and w Œ WM such
that (M,w) |π s(A). By substitution lemma, (Ms,w) |π A, where Ms is based on F. Thus F |πA.
Q.E.D.

Closure under substitution is an important condition on logics. Expressing theorems
as schemata (with schematic letters A, B, . . . ranging over arbitrary formulas) is a
simple means of asserting that the theorems of a logic are closed under substitution.
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For example, the set of all schematic instances of the formula schema �A … A equals
the set of substitution instances of the formula �p … p. The preservation properties of
rules are summarized as follows (Schurz 1997: 52):

Rule preserves: truth at a world model-validity frame-validity
TautR + + +
N, E, RE - + +
Subst - - +

It is also important to prove that certain formulas are not theorems of a logic. This is
usually done by giving semantic counterexamples. For example, the logic K does not
contain the theorem T: �A … A, which says that whatever is necessarily true is also
true. T seems intuitively to be an indispensable meaning postulate for ‘necessity.’ A coun-
termodel for T is, for example, the Kripke frame F with W = {u,v}, R = {·u,vÒ} (graphi-
cally displayed as u Æ v), with a valuation function V(p) = {v} (it suffices to define V
for the variables of the evaluated formula; this is often expressed as a lemma, cf. van
Benthem 1983: 26, 2.4). We have (M,v) |= p and thus (M,u) |= �p, but (M,u) |π p, and
so, M |π T, whence F |π T and thus T œ K.

EXERCISE Give countermodels for �(A ⁄ B) … �A ⁄ �B (the converse of i) and for ‡A
Ÿ ‡B … ‡(A Ÿ B) (converse of ii).

We obtain stronger logics than K by imposing structural conditions on frames. The
logic T = K + T is semantically obtained by requiring frames to be reflexive, that is to
satisfy the frame condition Ref: "w: wRw. We make this more precise by assuming a
(first or higher order) quantificational language L(R) which contains the accessibility
relation R as its only nonlogical predicate and has models of the form ·W,RÒ. |=R denotes
the standard notion of verification for L(R)-formulas (note that in L(R)-contexts, ‘uRv’
abbreviates ‘Rxy’). Then we obtain:

T-CORRESPONDENCE THEOREM For every frame F: F |= T iff F |=R Ref.

PROOF Right-to-left: We show that if F is reflexive, then �A … A is true on every world
w Œ WM in every model M based on F. Assume (M,w) |= �A. Hence "u: wRu fi (M,u)
|= A. Since F is reflexive, wRw, so (M,w) |= A. Hence (M,w) |= �A … A. Left-to-right: We
show, by contraposition, that if a given F = ·W,RÒ is not reflexive, then we can construct
a countermodel on F refuting the T-instance �p … p. So assume w Œ WF is an irreflexive
point, that is ÿwRw. Let p be true at all u with wRu but false at w ({u:wRu} Õ v(p) and
w œ v(p)). Call the resulting model M. Now, (M,w) |= �p, but (M,w) |π p; so (M,w) |π �p
… p. Hence F |π T. Q.E.D.

This is an example of a correspondence result. It tells us that the frame condition Ref can
be defined by (or translated into) the modal formula T, and vice versa. Generally, we say
that a modal formula or formula schema X Œ L corresponds to a (first or higher order)
frame-condition CX Œ L(R) iff "F Œ KF: F |= X ¤ F |=R CX. In this case, the frames of the
modal logic K + X (obtained from K by adding the axiom schema X) are exactly all
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frames satisfying CX. A modal formula (schema) X is called elementary, or first-order
definable, iff X corresponds to a first-order condition CX. Correspondence theory is the field
which explores the possibilities of intertranslations between modal and quantificational
logic (van Benthem 1983, 1984; our notion of ‘correspondence’ corresponds to van
Benthem’s ‘global equivalence’; 1983: 48f ).

Correspondence results for the five standard principles of alethic PMLs
Modal Principle: Frame Condition:
D: ÿ�^ Ser: "u$v: uRv (R serial)
T: �A … A Ref: "w:wRw (R reflexive)
4: �A … ��A Trans: "u,v,w: uRv Ÿ vRw … uRw (R transitive)
B: ‡�A … A Sym: "u,v: uRv … vRu (R symmetric)
5: ‡A … �‡A Euc: "u,v,w: wRu Ÿ wRv … uRv (R euclidean)

PROOF Exercise (Chellas 1980: ch. 3.2).

Correspondence results hold only w.r.t. frames; they do not say that every model vali-
dating axiom X satisfies the corresponding frame-condition CX. It is easy to construct
models for a logic L which are not based on a frame for L. We call such models non-
standard L-models. For example, a irreflexive T-model can be constructed by taking 
an irreflexive two world frame u ´ v where both worlds access each other, and by defin-
ing a valuation function V which agrees on both worlds, that is for all p Œ P, u Œ V(p)
iff v Œ V(p). It is easily proved for the so obtained model M, by induction on formula-
complexity, that (M,u) |= A iff (M,v) |= A holds for all A Œ L. Thus, all instances of T are
verified on both worlds of M.

The above correspondence results imply that if a PML contains several modal prin-
ciples, its frames will satisfy all of the corresponding frame conditions. According to the
Lemmon-code (Lemmon and Scott 1966; see Bull and Segerberg 1984: 20f ), we denote
normal PMLs as ‘KX . . . ,” where X is a set of additional axiom schemata for these
logics (except for special names for logics like T, S4, or S5). Principle D has been 
suggested for deontic logics by von Wright. T was suggested by Feys and von Wright 
for the alethic logic KT (von Wright (1951) calls it M). B refers to the ‘Browersche
system’ KTB and 4 to Lewis S4 = KT4 (both B and 4 have been suggested by Becker),
and finally 5 refers to S5 = KT5. Observe the following implication relations between
frame-conditions and corresponding logics: (i) Ref fi Ser, thus KT = KDT; (ii) Sym fi
(Trans ¤ Euc), thus KB5 = KB4 = KB45; (iii) Trans fi (Euc ¤ (Sym Ÿ Trans)), thus
KT5 = KTB4 = KDTB45 = S5; (iv) Ser Ÿ Sym fi Ref, thus KDB = KDTB; (v) Ser Ÿ Sym
fi (Trans ¤ Euc), thus KDB4 = KDB5 = KDB45 = KDTB45 = S5.

PROOF Exercise (Chellas 1980: 164).

The possible combinations of these five principles produce 15 mutually nonequivalent
standard systems of PML (Chellas 1980: 132). Various theorems of PML’s stronger
than K are found in Hughes and Cresswell (1968: ch. 2–4) and Chellas (1980: 131ff );
here are some of them.
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EXERCISE – PROVE SEMANTICALLY (i) A … ‡A, �nA … A, A … ‡nA Œ KT (�n =df � . . . � n
times iterated); (ii) �(‡A … B) … (A … �B) Œ KB; (iii) �A ∫ ��A, ‡A ∫ ‡‡A, �‡�‡A
∫ �‡A, ‡� ∫ ‡�‡�A Œ S4; (iv) ‡�A ∫ �A, �‡A ∫ ‡A Œ S5. – A modality m is a possibly
empty sequence of �s and/or ‡s. Two modalities m1 and m2 are L-equivalent iff m1p ∫
m2p Œ L. The stronger a PML, the more modalities collapse, that is become equivalent.
In S5, all iterations of modal operators are either equivalent with ‘‡’ or with ‘�’, thus
S5 has only three modalities, namely � – Ø – ‡. For modalities in other systems cf.
Chellas (1980: 147ff ).

Important semantical operations which preserve truth and validity of formulas are the
formation of generated submodels (subframes) and disjoint unions of models (frames). This
follows from the fact that the truth of �-formulas in a world w depends only on that
part Mw of the given model M which is reachable from w by an R-chain. Mw is called
the w-generated submodel of M = ·W,R,VÒ and is defined as ·Ww, Rw, VwÒ, with Ww = {u
Œ W: wRu}, where R is the transitive closure of R, Rw = R«(Ww ¥ Ww), and Vw (p) =
V(p)«Ww (for all p Œ P). The w-generated subframe of F is defined accordingly as Fw =
·Ww,RwÒ. If M is a class of models with pairwise disjoint world sets, then the disjoint sum
of the models in M is defined as DS(M) = ·»{WM:M Œ M}, »{RM:M Œ M}, »{VM:M Œ
M}Ò; and likewise for DS(F ). It is straightforward to prove for all formulas A, models M
and w Œ WM, (i) (M,w) |= A iff (Mw,w) |= A, and hence M |= A iff Mw |= A, and F |= A iff Fw

|= A, and (ii) for all model-classes M (or fames-classes F ) with pairwise disjoint world
sets, M |= A iff DS(M) |= A (or, F |= A iff DS(F ) |= A). A third truth- and validity-preserv-
ing operation is the formation of p-morphic copies of models and frames. It generalizes
the notion of isomorphic copy and was introduced by Segerberg (1971: 37; also called
‘contraction’ by Rautenberg, ‘zigzag morphism’ by van Benthem and ‘reduction’ by
Chagrov and Zakharyaschev 1997).

PROOF Exercise (Hughes and Cresswell 1986: 72f, 80; Chagrov and Zakharyaschev
1997: ch. 2.3).

A model (or frame) which validates the formula set G is called a model (or frame) for G.
M(G), F(G) denote the set of models, or frames respectively, for G. The above results tell
us that, for every G, the sets M(G) and F(G) are closed under the formation of gener-
ated submodels (subframes), disjoint unions of frames, and p-morphic models (frames).
Preservation results of this sort have various important consequences. A simple
example are S5-frames. Their accessibility relation is reflexive, symmetric, and transi-
tive and, hence, an equivalence relation: it imposes a partition onto the world set W into
mutually disjoint and exhaustive ‘cells’ (subsets) W1, . . . , Wn (i.e. Wi « Wj = Ø, »iWi =
W), such that all worlds in the same cell are mutually accessible, and are inaccessible
to worlds in different cells. Hence, each S5-frame is the disjoint sum of universal frames
·Wi, Ri = Wi ¥ WiÒ. They correspond to Carnap’s and Kripke’s original S5-frames
without a relation R. It follows from the generated subframe theorem that all univer-
sal frames are in F(S5); that is S5 is valid in all universal frames.

A final word on philosophical plausibility. Assume we understand possible worlds 
as variations of the real world which are possible relative to some background theory. If
this background theory is logic, then �A means that A’s truth is determined by princi-
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ples of logic alone. In this interpretation, all principles of S5 seem to be valid, in par-
ticular all modal iteration principles. For if it is determined by logic that A is true, then
it is also determined by logic – namely by metalogic – that A’s truth is determined by
logic: hence �A … ��A holds. Likewise, if it is not determined by logic that A is false,
then this fact is itself determined by logic: so ‡A … �‡A holds. The same reasoning
applies if the background theory contains logic + laws of physics. Then �A means that
A’s truth is determined by logic + laws of physics alone – so, also in this interpretation
of �A, S5 seems to be the right choice. To avoid confusions: of course, physical neces-
sity is stronger than logical necessity, but modal logics contain only those principles
which are closed under substitution and, hence, are independent from the content of a
nonlogical symbol. Proper physical necessity statements such as ‘it is necessary that
everything is composed of matter’ are content-specific and thus not part of a modal
logic.

In the above understanding of ‘�’ we must assume, in order to interpret iterated
modalities, that either the language of our background theory is closed (i.e. it can speak
about the truth of its own sentences; cf. ch. VIII of this volume), or that it contains a
potentially infinite hierarchy of metalanguages. If we do not make these strong
assumptions, then our interpretation will validate only the weaker logic T. If we are
even more scrupulous and interpret truth-determination as syntactical derivability from
our background theory, then even T will be too strong, as soon as our background
theory contains arithmetic; the adequate logic for this interpretation is G, discussed
below. If, on the other hand, ‘�’ is interpreted in the sense of tense logic as ‘being true
in all future times’, then only S4 but not S5 is the philosophically adequate logic. These
remarks show that even in the narrow realm of alethic modal logics, different PMLs are
needed for different interpretational purposes.

Axiomatic systems: correctness, completeness, and correspondence

The standard axiomatization of the minimal normal MPL, K, is its definition as the
smallest set of L-formulas which contains all instances of the axiom schemata Taut
and K and is closed under the rules MP and N. The stronger alethic logics KX, with X
Õ {D,T,B,4,5}, are axiomatized by adding X as the set of so-called additional axiom
schemata. A formula A is provable in logic L, in short �L A, iff A has an L-proof, which
is a sequence ·B1, . . . , BnÒ of formulas such that Bn = A, and every Bi (1 £ i £ n) is either
instance of an axiom schema of L or follows from previous members of the sequence
by one of the rules of L. If �L A, we also call A a theorem of L, and identify L with the
set of its theorems: L = {A: �LA}. A formula A is said to be deducible from formula set
G, in short G �L A, iff �L Ÿ Gf … A for some finite subset Gf Õ G. In particular, �L A iff Ø
�L A. Finally, G is called L-consistent iff G �/L p Ÿ ÿp, and L is called consistent iff p Ÿ ÿp
œ L.

The above axiomatization of PML’s is a Hilbert-style axiomatization of their modal
part together with an unspecified (syntactic) determination of tautology-hood. It is
rather common for PMLs. If we additionally allow the application of tautological rules
TautR, we obtain a comfortable way of proving theorems (see exercise below). Of course,
various alternative but equivalent axiomatizations are possible. To highlight the 
relation of K to weaker PML’s, K may equivalently be axiomatized by rules MP + E and
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axiom schemata Taut + M + C + T (exercise below). G �L A may be equivalently defined
by the existence of a proof of A from axioms in L » G with modal rules restricted 
to formulas which do not depend on G (see Schurz 1997: 53). There exist also various
non-Hilbert-style axiomatizations for PMLs, such as sequent or tableau calculi (see, for
example, Fitting 1983; Wansing 1996).

EXERCISE (1.) Prove the theorems of K, T, S4 and S5 listed in § 2.2. Prove that axioms
Taut + M + C + T and rules TautR + E are an equivalent axiomatization of K (see, for
example, Chellas 1980: ch. 4, ch. 8; see also example below).

Example: proof of K from Taut + M + C + TautR + E:
1. (�(A … B) Ÿ �A) … �((A … B) Ÿ A) C-instance
2. ((A … B) Ÿ A) ∫ (A Ÿ B) Taut
3. �((A … B) Ÿ A) ∫ �(A Ÿ B) E from 2
4. (�(A … B) Ÿ �A) … �(A Ÿ B) TautR from 1,3
5. �(A Ÿ B) … �B M-instance
6. �(A … B) … (�A … �B) TautR from 4,5

PROOF OF N FROM TAUT + M + C + T + TAUTR + E Assume �L A. Hence �L A ∫ T, by TautR.
So �L �A ∫ �T, by E. Because �T is an axiom, we get �L �A by TautR. Q.E.D.

In general, a normal PML (i.e. a normal extension of K) is defined (after Lemmon and
Scott 1966) as any subset L Õ L which contains K and is closed under the rules MP, N,
and Subst. Clearly, every normal PML L is representable as L = KX, where X is some set
of additional axiom schemata X (Schurz 1997: 50, lemma 4). If X is recursively 
enumerable, then KX is called (recursively) axiomatizable (Chagrov and Zakharyaschev
1997: 495f ); if X is finite, KX is finitely axiomatizable. The class of a normal PMLs
forms the infinite lattice P with K as its bottom and L = the inconsistent logic as its top
(for various results on this lattice cf. Chagrov and Zakharyaschev 1997). Not all L Œ P
are axiomatizable.

The major properties of axiomatized logics (i.e. axiomatic systems) are their correct-
ness and completeness. Generally, an axiomatic system L is correct w.r.t. an underlying
semantics S iff everything what is L-provable is S-valid, and L is complete w.r.t. S iff
everything what is S-valid is L-provable. In modal logics, these notions can be defined
w.r.t. models as well as w.r.t. frames, as follows:

1. L is correct w.r.t. F iff �L A fi |=F A (for all A)
L is correct w.r.t. M iff �L A fi |=M A (for all A)

2. L is w.(eakly) complete w.r.t. F iff |=F A fi �L A (for all A)
L is w. complete w.r.t. M iff |=M A fi �L A (for all A)

3. L is s.(trongly) complete w.r.t. F iff G |=F A fi G �L A (for all G, A)
L is s. complete w.r.t. M iff G |=M A fi G �L A (for all G, A)

4. L is w./s. frame-complete (simpliciter) iff L is w./s. complete w.r.t. F(L).
L is w./s. model-complete (simpliciter) iff L is w./s. complete w.r.t. M(L).

Completeness simpliciter is defined w.r.t. the class of all frames or models for a logic.
Correctness is the converse property of weak completeness. A separate notion of
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‘strong’ correctness (G �L A fi G |=M/F A) is not needed: weak correctness implies strong
correctness because ‘�L’ is by definition finitary (G �L A iff �L Ÿ Gf … A). Correctness of
an axiomatic system L is standardly proved as follows: one demonstrates (1) that every
axiom of L is valid, and (2) that every rule of L preserves validity, and concludes, by
induction on the length of the L-proof of A, that A is valid w.r.t. the given M or F. Claim
2 has been established for all normal PMLs, and claim 1 for all PMLs KX with X Õ
{D,T,B,4,5}. Hence all the latter PMLs are correct w.r.t the corresponding classes of
models and frames. Moreover, all PMLs representable as KX are correct w.r.t. M(X) 
and F(X).

The standard technique to prove completeness rests on the following consistency-
formulation of completeness which is classically equivalent:

CONSISTENCY-LEMMA L is w. complete w.r.t. M [or F] iff every L-consistent formula A is
satisfiable in M [or F, resp.]; and L is s. complete w.r.t. M [or F] iff every L-consistent
formula set G is satisfiable w.r.t. M [or F, resp.]. Proof: Exercise.

Strong completeness is stronger than weak completeness because semantical conse-
quence is not by definition finitary. Strong frame- (or model-) completeness of L implies
frame- (or model-) compactness of L in the sense that a formula set G is satisfiable on an
L-frame [or in an L-model, resp.] whenever every finite subset of G is satisfiable on this
L-frame [or in that L-model, resp.]. Weak completeness plus compactness imply strong
completeness. If an axiomatic system L is correct and w./s. complete w.r.t. a given class
F or M, then it is said to be w./s. characterized by F or M. This means that the syntactic
definition of L (and of �L in the case of s. completeness) coincides with the semantic
one.

The canonical technique of proving model-completeness of a normal PML has been
introduced by Lemmon and Scott (1966) and Makinson (1966). It is an adaptation 
of the ‘Lindenbaum–Gödel–Henkin’ technique to modal logics. It consists in the con-
struction of the so-called canonical model Mc(L) of the given logic L, which contains
maximally consistent formula sets, that is maximal state descriptions, as its worlds (cf.
Hughes and Cresswell 1984: 22f; Chellas 1980: 173, def. 5.9):

DEFINITION OF THE CANONICAL MODEL (1) A formula set G is maximally L-consistent iff
G is L-consistent and no proper extension D of G is L-consistent. (2) The canonical
model Mc(L) of L (in the given denumerably infinite language L) is defined as ·Wc, Rc,VcÒ
where (2.1) Wc is the class of all maximally L-consistent formula sets, (2.2) Rc is defined
by "u,v Œ Wc: uRcv iff {A: �A Œ v} Õ u, and (2.3) for all p Œ P, Vc(p) is defined by "w
Œ Wc: w Œ Vc(p) iff p Œ w.

It is well-known from truth-functional logic that maximally L-consistent formula sets
enjoy the following maximality properties:

MAXIMALITY-LEMMA For all maximally L-consistent sets D and formulas A, B: (1) D �L

A implies A Œ G (deductive closure), (2) either A Œ D, or ÿA Œ D (completeness), and
(3) (A ⁄ B) Œ D iff (A Œ D or B Œ D) (primeness). Analogous properties exist for Ÿ and
…. Proof: Exercise (cf. Hughes and Cresswell 1984: 18f ).
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LINDENBAUM-LEMMA Every L-consistent formula set G can be extended to a maximally
L-consistent formula set D � G (proof cf. Hughes and Cresswell 1984: 19f ).

The central idea of the canonical model construction is to prove the following:

TRUTH LEMMA For all A Œ L and w Œ Wc: (Mc,w) |= A iff A Œ w.

The three lemmata imply strong completeness of L as follows. By maximality lemma
1, L is a subset of every world of Wc. So by truth lemma, Mc is an L-model. By
Lindenbaum-lemma, every given L-consistent G is subset of some world in Wc. So by
truth lemma, G satisfied in the L-model Mc; Q.E.D. To prove the truth lemma we 
need the following lemma which guarantees that Rc is well-behaved in the sense that
whenever ‡A Œ w Œ Wc, then $u with wRcu and A Œ u:

CANONICAL MODEL LEMMA (1) If ÿ�B Œ G and G is L-consistent, then {A: �A Œ G} »
{ÿB} is L-consistent, too. (2) "u Œ Wc: �A Œ u iff "v: uRcv fi A Œ v.

PROOF Exercise (Hughes and Cresswell 1984: 21f; Chellas 1980: 172).

PROOF OF THE TRUTH-LEMMA We prove the claim by induction on the complexity of L-
formulas. (1) For A = p Œ P: (Mc,w) |= p iff p Œ w holds for all w Œ Wc by definition of
Vc. (2) For A = ÿB: (Mc,w) |= ÿB iff (Mc,w) |π B iff B œ w by induction hypothesis, iff ÿB
Œ w by maximality lemma, 2. (3) For A = B ⁄ C: (Mc,w) |= B ⁄ C, iff (Mc,w) |= B or (Mc,w)
|= C, iff B Œ w or C Œ w by induction hypothesis and propositional logic, iff (B ⁄ C) Œ w
by maximality lemma, 3. (4) For A = �B: (Mc,w) |= �A iff "u: wRcu fi (Mc,u) |= A, iff
"u: wRcu fi A Œ u by induction hypothesis and first-order logic, iff �A Œ w by
canonical model lemma, 2. Q.E.D.

The foregoing proofs hold for all normal PMLs and thus establish:

PML-MODEL-CHARACTERIZATION-THEOREM Every normal PML L is strongly model-
complete, and is strongly characterized by M(L).

Frame-completeness is stronger than model-completeness: it implies not only that every
L-consistent formula (set) is satisfiable in some L-model, but that it is satisfiable in a 
standard L-model. So, to prove that L is s. frame-complete requires to prove something
additional, namely: that the frame of Mc(L) is a frame for L. Following Fine (1975a),
we call normal PMLs satisfying this condition canonical (in general, canonicity is rela-
tivized to the cardinality of P; but we always assume that P is denumerably infinite).
Canonicity implies strong frame-completeness; whether the reverse direction holds is
an open question. Clearly, K is canonical because Mc(K) is based on a frame. For
stronger systems, canonicity has to be proved for each additional axiom schema sepa-
rately. Axiom schema X is called canonical iff the frame of Mc(L) is a frame for L when-
ever L contains X. If X1, . . . , Xn are canonical, then every KX with X Õ {X1, . . . , Xn}
will be canonical, too.
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CANONICITY-THEOREM D, T, B, 4 and 5 are canonical.

PROOF Exercise (Hughes and Cresswell 1984: ch. 2; Chellas 1980: ch. 5.4).

EXAMPLE Proof of canonicity of 4: Assume 4 Œ L. To show that for "u,v,w in Mc(L),
uRcv Ÿ vRcw implies uRcw, we assume (a) {A: �A Œ u} Õ v, (b) {A: �A Œ v} Õ w, and
prove thereof that (c) {A: �A Œ u} Õ w. Take any �B Œ u. By deductive closure of
canonical worlds, �B … ��B Œ u, and thus ��B Œ u. So �B Œ v by (a) and B Œ w by
(b).Thus for all �B Œ u, B Œ w, which is exactly (c). Q.E.D.

In general, if a normal PML L is correct w.r.t. F, then it is also correct with respect
to every subclass F¢ Ã F; and if it is w./s. complete w.r.t. F, then it is also w./s. complete
w.r.t. every superclass F¢ … F (and likewise for models). It often happens that a normal
MPL L which is characterized by F(L) is also characterized by an interesting subclass F¢
Ã F(L). For example, every canonical L Œ P is strongly characterized by a single frame,
namely the frame of the canonical model Mc(L) (this follows direct from the complete-
ness proof ). Or, every L Œ P is w./s. characterized by the class of its generated subframes
(which follows from the generated subframe lemma). Another way of producing char-
acteristic subclasses of F(L) is based on the fact that the following first-order conditions
on frames cannot be expressed by modal formulas: Irr ÿwRw (irreflexivity), Asym uRv
… ÿvRu (asymmetry), Antisym uRv Ÿ u π v … ÿvRu (antisymmetry), Intrans uRv Ÿ vRw
… ÿuRw, and Anticon "u,v,w: u π v π w Ÿ uRw … ÿvRw (anticonvergence). In other
words, correspondence fails for these conditions in the right-to-left direction. For K, this
can be proved by the technique of unraveling, which is a validity-preserving transfor-
mation of arbitrary models into irreflexive, asymmetric, and intransitive models (due
to Dummett and Lemmon 1959; see Bull and Segerberg 1984: 45). Thus, K is also
strongly characterized by all irreflexive, asymmetric, and intransitive frames.

Characterization by subclasses is important for the PML’s of ordering relations. The
technique of bulldozing introduced by Segerberg (1971: 78ff ) transforms every reflex-
ive and transitive model M into a validity-preserving partially ordered model M; if M is
merely transitive then the ordering of M’s frame is strict. It follows from this that K4 is
strongly characterized by the class of strict partially ordered frames, and S4 by the class
of partially ordered frames. Finally, ramification transforms arbitrary [reflexive, transi-
tive] models into validity-preserving [reflexive, transitive, resp.] models based on tree-
frames (Chagrov and Zakharyaschev 1997: 32–5). Tree models represent branchings
of possible future states in time and are important for the logic of causality and
agentship (cf. Kutschera 1993, Prendinger and Schurz 1996).

A brief remark on classical modal logics concludes this section. They are weaker than
K and are mainly used for nonalethic (e.g. epistemic, deontic) interpretations of the
modal operator (for details see Segerberg 1971: ch. 1 and Chellas 1980: part III). The
minimal classical modal logic, E, is axiomatized by Taut, MP, and the rule E. E allows it
to regard the intensional operator � as applying to propositions; this requires truth-
preservation of � under replacements of logically equivalent sentences. M = E + M is
the minimal monotonic and C = E + M + C the minimal regular modal logic. If we finally
add T we get an alternative axiomatization of K. Semantically, classical modal logics
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are characterized by so-called neighborhood frames, which are pairs ·W,NÒ with W π f
a possible world set and N:W Æ Pow(Pow(W)) a function assigning to each world w Œ
W a neighborhood N(w) which contains exactly those ‘propositions’ (i.e. W-subsets)
which are necessarily true at w. Completeness proofs proceed via canonical neighbor-
hood models: E is characterized by the class of all neighborhood frames, and the seman-
tic conditions corresponding to M, C, and T are closure of neighborhoods under
supersets, finite intersections, and containment of W. K-neighborhood-frames with all
three properties can be transformed into point-wise equivalent Kripke frames, and C-
neighborhood frames can be transformed into Kripke-frames with an additional set of
so-called ‘queer’ worlds (Segerberg 1971: 23ff ).

Decidability and finite model property

A logic L Õ L is called decidable iff for every A Œ L it can be decided after a finite number
of primitive computation steps whether or not A Œ L. Of course, the mere axiomatiz-
ability (i.e. recursive enumerability) of a logic does not imply its decidability. It is a
famous fact that a logic L is decidable iff the theorems of L as well as the non-theorems
of L (i.e. the elements of L – L) are recursively enumerable (Chagrov and
Zakharyaschev 1997: 492). A logic L is said to have the finite model property (f.m.p.) iff
every L-consistent formula A is satisfiable on a finite L-model. (Likewise for the ‘finite
frame-property.’) A standard way of proving the decidability of an axiomatizable logic
is by proving that it has the f.m.p. For, we can effectively enumerate all finite models of
a given formula A and test whether they are A-countermodels. So if an axiomatizable
logic L has the f.m.p., then after a finite number of steps either the enumeration of L-
theorems will output A, or the enumeration of L’s finite models will produce an A-
countermodel (Chagrov and Zakharyaschev 1997: 492). Note, however, that there are
also decidable logics which do not have the f.m.p. (Gabbay 1976: 258–65).

Note the following fundamental f.m.p.-theorem: For all L Œ P: L has the f.m.p. ¤ L
has the finite frame property ¤ L is w. complete w.r.t. L’s finite frames. The second
equivalence is an immediate consequence of the first, which has been proved by
Segerberg (1971: 29ff ) as follows: (1) for every model there exists an elementary equiv-
alent distinguishable model (where no two worlds verify the same formulas); and (2) if
a finite distinguishable models validates L, then its frame is an L-frame.

A standard technique to produce finite models for a given formula or finite formula
set is filtration. Assume G is a set of formulas closed under subformulas (i.e. if A Œ G,
and B is a subformula of A, then B Œ G). Given M = ·W,R,VÒ, two worlds u, v Œ WM are
called G-equivalent, in short u ∫Gv, iff they verify the same formulas in G (i.e. iff "A Œ
G: (M,u) |= A ¤ (M,v) |= A). For w Œ WM, [w]G =df {u Œ WM: w ∫G u} denotes the G-
equivalence class of w. Then, a model MG = ·WG,RG,VGÒ is called a G-filtration of M, iff
MG = {[w]G: w Œ WM}, VG(p) = {[w]G: w Œ v(p)} for all p Œ P, and R satisfies two condi-
tions (u, v Œ WM): (F1): If uRv, then [u]G RG [v]G, and (F2): If [u]G RG [v]G , then "A Œ G:
(M,u) |= �A fi (M,v) |= A. Note that there exist several G-filtrations of a given model M.
The frame ·WG,RGÒ is the corresponding G-filtration of ·W,RÒ.

FILTRATION THEOREM If MG is a G-filtration of M, then "A Œ G "w Œ AM: (M,w) |= A iff
(MG, [w]G) |= A. Proof: Exercise (Hughes and Cresswell 1984: 139).
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MG is a finite model whenever G is finite. Thus, by filtering a model M for an L-
consistent formula A through the (finite) set subf(A) of A’s subformulas, we obtain a
finite model Msubf(A) verifying A. To prove by this method that L has the f.m.p. requires
in addition to prove that the filtered model is indeed an L-model. A simple way to do
this is to show that the filtered frame ·Wsubf(A),Rsubf(A)Ò is a frame for L. This is easy for the
logics K, KD, and KT, since one can prove that every filtration of a frame preserves seri-
ality or reflexivity (Chellas 1980: 105). For other standard systems such as KB, K4,
S4, etc., special filtrations are necessary to demonstrate preservation of the corre-
sponding frame-properties (Chellas 1980: 106ff ). Segerberg has proved that all normal
extensions of K45 have the f.m.p. and, thus, can be classified as the logics of certain
simple frame classes (Segerberg 1971: 123ff ).

We finally remark that, though f.m.p. proves decidability for axiomatizable logics, it
does not produce a practically feasible decision method. Practically feasible decision
methods for standard systems are, for example, tableau methods (Hughes and Cresswell
1968: ch. 5–6; Chagrov and Zakharyaschev 1997: ch. 3.4).

More metalogical results on PMLs

Further examples of axiom schemata which are both first-order definable and canoni-
cal are:

Axiom schema: Corresponding first-order condition:
(Gk,l,m,n) ‡k�lA … �m‡nA R is k, l, m, n-incestual:

"u,v,w,w¢: uRkv Ÿ vRmw … $w¢(vRlw¢ Ÿ wRnw¢)
0.3: �(�A … B) ⁄ �(�B … A) R is locally strongly connected:

"u,v: $w(wRu Ÿ wRv) … (uRv ⁄ vRu)
0.3*: �(A Ÿ �A … B) ⁄ R is locally connected:

�(B Ÿ �B … A) "u,v: $w(wRu Ÿ wRv) Ÿ u π v … (uRv ⁄ vRu)
0.2: ‡�A … �‡A R is locally strongly convergent:

"u,v: $w(wRu Ÿ wRv) … $w¢(uRw¢ Ÿ vRw¢)
0.2*: ‡(A Ÿ �B) … �(A ⁄ ‡B) R is locally convergent:

"u,v: $w(wRu Ÿ wRv) Ÿ u π v … $w¢(uRw¢ Ÿ vRw¢)
Dense: ��A … �A R is dense: "u,v: Ruv … $w(uRw Ÿ wRv)
Triv: �A ∫ A Every world reaches only itself: "u,v: uRv … u = v
Ver: �^ Every world is a dead end: "u,v: ÿuRv
Altn: �A1 ⁄ �(A1 … A2) ⁄ . . . Every world reaches at most n distinct worlds:

. . . ⁄ �(A1 Ÿ . . . Ÿ An … An+1) "u, v1, . . . , vn+1: Ÿ {uRvi: 1 £ i £ n} … ⁄
{vi = vj: 1 £ i < j £ n}

Gk,l,m,n is a very general schema introduced by Lemmon and Scott (1966) (Hughes and
Cresswell 1984: 42); note that D is K-equivalent with G0,1,0,1 = �A … ‡A, T = G0,1,0,0, B
= G0,0,1,1, 4 = G0,1,2,0, 5 = G1,0,1,1, 0.2 = G1,1,1,1, Dense = G0,2,1,0. S4.2 = S4 + 0.2. Sahlqvist
(1975) has proved first-order definability and canonicity for a class of axiom schemata
which is even more general than Gk,l,m,n (cf. Chagrov and Zakharyaschev 1997: ch.
10.3). The schemata 0.3, 0.3* (introduced by Lemmon) and 0.2, 0.2* (introduced by
Geach) are important for the modal logics of orderings; 0.3, 0.3* are equivalent for
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reflexive frames, and 0.2, 0.2* for serial frames. S4.3 = S4 + 0.3 is the logic of linear
orderings. Likewise, K4.3 is the logic of strict linear orderings and KD4.3 the logic of
strict linear orderings without last element. By adding Dense one obtains the logics of
corresponding dense orderings. Ver and Triv are famous because they are character-
ized by the two singleton frames ·{w}, ·w,wÒÒ and ·{w}, ØÒ, respectively, and every con-
sistent L Œ P0 is either contained in Triv or in Ver (Makinson’s theorem). The logics
S5(Altn) are the only consistent extensions of S5 (Scroggs’ theorem; S5Alt1 = KTriv).
For more details and canonical axioms see, for example, Segerberg (1971); Hughes and
Cresswell (1984); or Chagrov and Zakharyaschev (1997).

Let us turn to examples where completeness and/or correspondence fails. We call an
axiom schema X (and the corresponding logic KX) non-compact iff it is weakly but not
strongly frame-complete, and frame-incomplete iff it is not even weakly frame-complete.
Examples of axiom schemata which are both non-compact and not elementary (not
first-order definable) are Löb’s axiom G (also called W) and McKinsey’s axiom 0.1, along
with their corresponding frame-condition:

(G) �(�A … A) … �A R is transitive and terminal, that is there are no infi-
nite R-chains w1Rw2 . . . wnRwn+1 . . .

(0.1) �‡A … ‡�A For no w Œ W there exist disjoint nonempty W-
subsets U, V, such that all w Œ {w*:wRw*} have R-
successors in U and V

G-frames are irreflexive, since a reflexive w implies the infinite chain wRwRw . . . As a
result, KG contains 4, but neither T nor D (Hughes and Cresswell 1984: 101). That the
G-corresponding condition CG at the right side (proof see van Benthem 1984: 195f ) is
genuinely second-order is seen as follows. Consider the infinite formula set D = {CG} »
{xiRxi+1: i Œ w}. Every finite subset of D is satisfiable in a G-frame. Since first-order logic
is compact, it follows that if CG were first-order, then D would be satisfiable in a G-frame.
But it is not, since by asymmetry of R this would imply an infinite ascending R-chain.
So CG is not first-order (Chagrov and Zakharyaschev 1997: 166). That KG is not canon-
ical can be proved by showing that the frame of Mc(KG) contains reflexive worlds and,
thus, is not a KG-frame: this follows from the fact that the so-called Solovay’s logic S =
KG + T is consistent, and hence, produces reflexive worlds in Mc(KG) (Chagrov and
Zakharyaschev 1997: 165). Weak completeness of KG is proved by a suitable filtration
of Mc(KG) (Hughes and Cresswell 1986: 47ff ).

Correspondence for the second-order condition corresponding to McKinsey’s axiom
0.1 is established in Fine (1975b). K0.1 has the f.m.p. and thus is w. frame-complete
(Fine 1975a), but it is not canonical (Goldblatt 1991). The logic KG (‘G’ for ‘Gödel’) has
become famous because it allows a translation of Gödel’s incompleteness proof for first-
order arithmetics into modal logic. If one translates �A into the arithmetical language
with Gödel-numbering g and provability predicate Pr(x), by the translation function
t(�A) = Pr(g(t(A))), then KG contain all modal theorems which are valid in this arith-
metical interpretation, and Gödel’s incompleteness results have a direct translation 
into the modal language (for details see Smorynski 1984). Also McKinsey’s axiom is
remarkable, for two reasons. First, 0.1 becomes canonical if it is added to K4 or S4:
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K4.1 = K4 + 0.1 and S4.1 = S4 + 0.1 are first-order definable and canonical (proved
in Lemmon and Scott 1966: 75). K4.1-frames are defined by the transitivity of R and
the condition that every world reaches a ‘dead end’ ("u$v: uRv Ÿ "w(vRw … v = w));
and S4.1-frames are additionally reflexive (van Benthem 1984: 202). Second, S4.1 is
then a simple example of a canonical PML with a frame-incomplete quantificational
counterpart (§3.1 below).

All K45-extensions and all S4.3-extensions are weakly frame-complete. Lemmon
conjectured in 1966 that all normal PMLs are w. frame-complete. In 1974, Fine and
Thomason gave first examples of frame-incomplete PMLs. A standard way of proving the
frame-incompleteness of L Œ P is the following: prove (i) that F(L) validates a certain
formula schema X, and (ii) that X is not derivable in L, by specifying a class M of non-
standard models of L which falsifies X. (Note that M cannot be standard because then
M would also verify X.) By correctness w.r.t. models, this implies that �/L X, and hence,
that L is frame-incomplete.

Model-classes for a given L, even if nonstandard, must preserve validity under the
rule of substitution. Such model-classes have been introduced as so-called general
frames by Thomason (1972) (for details see Chagrov and Zakharyaschev 1997: ch. 8).
A general frame G is defined as a pair G = ·F,PropÒ where F is an ordinary frame and Prop
Õ Pow(W) is a set of ‘valuation-admissible’ subsets of W which is closed under inter-
section, relative complement, and under the operation ‘�:W Æ W’ defined by �X = {w:
"u(wRu … u Œ X}. The class M(G) of G-models is the class of all models based on F with
valuation function V:P Æ Prop taking values in Prop. By definition, G |= A iff M(G) |=
A. This definition entails, by the closure conditions on Prop, that whenever a general
frame G validates A, then G validates every substitution instance s(A) of A. Moreover,
to every model M = ·W,R,VÒ there corresponds a minimal general frame GM defined as
··W,RÒ,PropMÒ with PropM = the set of W-subsets which are the value of some L-formula
under V (Chagrov and Zakharyaschev 1997: 237). It follows that every substitution-
closed formula set and in particular every logic L Œ P which is valid in M must also be
valid in GM. As a result, model-completeness of a logic implies its completeness w.r.t.
general frames. (For details on general frames and their connection to modal algebras
see Chagrov and Zakharyaschev 1997.)

A simple example of a frame-incomplete PML is van Benthem’s logic KVB, where
VB = ‡�^ ⁄ �(�(�B … B) … B). It is easily checked that every frame for VB satisfies the
first-order condition that every world is a dead end or reaches a dead end, and hence,
validates the axiom ‡Ver = ‡�^ ⁄ �^. Van Benthem constructs a countably infinite
general frame with allowable values based on finite and cofinite W-subsets which vali-
dates VB but falsifies ‡Ver (Hughes and Cresswell 1984: 57ff ). Van Benthem’s exam-
ples shows also that first-order definability does not imply frame-completeness of a logic
(which was an earlier conjecture). That also the reverse implication relation does not
hold was demonstrated by an example of a canonical logic which is not first-order defin-
able, given by Fine (1975a), namely the logic KF = K + F =df ‡�A … ‡�(A Ÿ B) ⁄ ‡�(A
Ÿ ÿB).

Both examples show that there is no simple relationship between completeness and
correspondence. First of all, correspondence has two sides. Modal formulas may or may
not have corresponding frame-conditions (correspondence I), and frame-conditions

ALETHIC MODAL LOGICS AND SEMANTICS

461



may or may not have corresponding modal formulas (correspondence II) (van Benthem
1984: 192, 211). Concerning correspondence I, van Benthem (1984: 169ff ) shows
that every modal formula has a corresponding second-order frame condition; so the
only interesting question is whether a modal formula is elementary. Concerning cor-
respondence II, various examples of modally undefinable first-order conditions have
been given in §2.3. General theorems about correspondence I and II are found in van
Benthem (1983, 1984). The following connections between frame-completeness and
correspondence I have been proved in Fine (1975a): (1) If L Œ P is first-order definable
and w. frame-complete, then L is canonical, and (2) If L Œ P is natural, then L is first-
order definable. Naturality, as defined by Fine, is a stronger property than canonicity (a
generalization of Fine’s theorem for general frames in terms of ‘D-persistence’ is given
by van Benthem (1983); see Chagrov and Zakharyaschev 1997: 341–4).

For many purposes, one needs PMLs with several different modal operators, for
example an alethic-deontic PML for the is–ought problem (Schurz 1997). A multimodal
language LI contains a set {�i: i Œ I} of modal operators (I an index set). The simplest
kind of a normal PML in LI is a so-called combination (or join) of normal monomodal
�i-logics {Li: i Œ I}, denoted by �{Li: i Œ I}, and defined as the smallest normal PML
in LI containing every Li. Frames for these logics have the form ·W, {Ri: i Œ I}Ò.
Syntactically, �{Li: i Œ I} is obtained from the Li (i Œ I) by joining their representative
axiom sets Xi, and under substitution in the combined language LI. Hence, �{Li: i Œ I}
is representable as KIXI with XI = »iXi. Instead of proving metalogical properties like
completeness, etc. for all possible multimodal combinations separately, it is more desir-
able to prove general transfer theorems in the following sense: whenever all Li have a
certain property, then �{Li: i Œ I} has it, too. The following general transfer theorem
holds for combined multimodal logics: (1) Weak and strong frame-completeness,
canonicity and f.m.p. transfer from the Li (i Œ I) to �{Li: i Œ I}; and (2) decidability,
interpolation, and Halldén-completeness transfer under presupposition of weak com-
pleteness of the Li (i Œ I). The theorem was independently proven by Kracht and Wolter
(1991) and Fine and Schurz (1996) (the latter paper was been written up in 1990 but
its publication was delayed). If a multimodal logic contains in addition interactive
axioms which relate distinct modalities (e.g. �1�2A … �2�1A), then transfer theorems
are possible only in special cases (Fine and Schurz 1996: 210ff, for such examples). The
investigation of combined logics and transfer has become a topic of increasing interest
in modal logics; for a survey see Kracht and Wolter (1997).

3 Modal Quantificational Logics (QMLs)

Fixed domain and rigid designators: Q1MLs

LQ1 is the object language modal quantificational logics of ‘type 1,’ in short: Q1MLs.
It contains a set V of individual variables (x, y, . . .), in short: variables, a set C of indi-
vidual constants (a, b, . . .), in short: constants, and for each n ≥ 0, a set Rn of n-ary
relation symbols (F, G, Q, . . .). All these sets are denumerably infinite (0-ary relation
symbols are propositional variables). For reasons of simplicity we omit function
symbols; thus singular terms, denoted by t, t1, t2, . . . , are constants or variables; J(the
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set of all terms) =df V » C. The new primitive logical symbols are the universal quan-
tifier " ("x = ‘for all x:’), and the identity symbol, =. The existential quantifier $ ($x =
‘there exists an x:’) is defined as usual by $xA =df ÿ"xÿA. LQ1 is again identified with
the set of its (well-formed) formulas, which are recursively defined by the following
clauses: (1) t1, . . . , tn Œ J, Q Œ Rn fi Qt1 . . . tn Œ LQ1; (2) A, B Œ LQ1 fi ÿA, A ⁄ B,
�A Œ LQ1; and (3) x Œ V, A Œ LQ fi "xA Œ LQ1.

We assume acquaintance with the notions of bound and free occurrences of vari-
ables. Variable x is called free in A iff A contains at least one free x-occurrence. Vf(A)
= the set of free variables in A; likewise for V(A), C(A), Rn(A). A* is an alphabetic variant
of formula A iff A* results from A by replacing every bound occurrence of some vari-
ables x1, . . . xn in A by variables y1, . . . yn, respectively, provided (for each 1 £ i £ n) that
no xi-occurrence in A lies in the scope of an "yi-quantifier and no free yi-occurrence
in A lies in the scope of an "xi-quantifier. A[t/x] denotes the result of the correct sub-
stitution of term t for variable x in A and is defined as the result of the replacement of
every free occurrence of x in A* by t; where A* is the first alphabetic variant of A
(according to a given formula enumeration) in which x does not occur in the scope of
a quantifier binding t. A[t1-n/x1-n] denotes the result of the correct (simultaneous) sub-
stitution of ti for xi in A (for all pairwise distinct xi).

The notion of a frame remains the same for all kinds of QML-semantics. The simplest
way of extending Kripke models to modal quantificational languages are Q1-models.
They contain one fixed domain D of objects, which is the same for all worlds in W, and
assume that singular terms are rigid – so only the interpretation of the relation symbols
is world-relative. More precisely, a Q1-model is a quadruple M = ·W,R,D,VÒ where ·W,RÒ
is a frame, D π Ø is a nonempty domain of individuals, and the valuation function V is
defined as follows: (1) V: J Æ D, hence "t Œ J. V(t) Œ D, and (2) for all n ≥ 0, V: W ¥ Rn

Æ Dn, hence V(w,R) =df Vw(R) Õ Dn. The value Vw(R) is also called the ‘extension’ of R
at world w, and the partial function V(R):W Æ Dn is called R’s intension (this view of
intension’ goes back to Carnap). The restriction of V to constants and relation symbols
is often called an interpretation of LQ1, and the restriction of v to variables an assign-
ment for variables. Because we treat free variables and constants semantically on a par,
we don’t need to distinguish between closed and open formulas. This setting is close to
Machover (1996: 151f ). Of course, variations are possible. For example, one may drop
constants and let free variables play their role, as in Hughes and Cresswell (1984); or
one may give free variables the closure-interpretation, as in Fine (1978).

M[x:d] denotes a model which is like M except that vM assigns d Œ D to x; and similar
for M[x1-n/d1-n]. The definition of ‘(M,w)|= A’ is as follows: for atomic formulas, (M,w)|=
Rt1 . . . tn iff ·V(t1), . . . , V(tn)Ò Œ vw(R) and (M,w)|= t1 = t2 iff V(t1) = V(t2); for A = ÿB, B
⁄ C, �B as in the propositional case; and for quantified formulas: (M,w) |= "xA iff "d
Œ D, (M[x:d],w) |= A. The other semantical notions are as in the propositional case. The
coincidence lemma tells us that (M,w) |= A[t/x] iff (M[x:vM(t)],w) |= A (Proof: exercise
(Hughes and Cresswell 1984: 168).

DEFINITION OF NORMAL Q1MLS Given a PML KX, its Q1-counterpart is denoted as Q1KX
and is defined as the smallest set of LQ1-formulas which contains all LQ1-instances of
the axiom schemata of KX plus the following axiom schemata for quantification (UI,
", UG, BF) and identity (I, rISub, rIÿ) (for all x Œ V, t Œ J ):
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UI: "xA … A[t/x] (‘universal instantiation’)
BF: "x�A … �"xA
"1: "x(A … B) … ("xA … "xB)
"2: A … "xA, provided x is not free in A.
I: t = t
rISub: t1 = t2 … (A[t1/x] … A[t2/x]) (‘rigid identity-substitution’)
rIÿ: ÿt1 = t2 Æ �ÿt1 = t2 (‘rigid identity w.r.t. ÿ)

and which is closed under the rules of KX (TautR, MP, N) and under the rule:

UG: A/"xA (‘rule of universal generalization’).

Provability �L A and deducibility G �L A is defined as for PMLs.

RECAPITULATION OF NONMODAL QL Prove the dual axiom of ‘existential instantiation’ EI:
A[t/x] … $xA, and the dual rule of ‘existential generalization’ EG: A … B/$xA … B,
provided x œ Vf(B). Prove the equivalence of UG with UGt: A[x/t]/"xA, provided t œ
J(A). Prove that our axiomatization UI + "1 + "2 + UG (also used by Fine 1978) is
equivalent with UI + UG*: ‘A … B/A … "xB, provided x œ Vf(A)’ (used, e.g. in Hughes
and Cresswell 1984: 166).

SYNTACTICAL THEOREMS ABOUT Q1MLS (1) The rule UG is neither valid nor model-
admissible, but merely frame-admissible. (2) BF is valid in every Q1-model. (3) The
converse Barcan formula, cBF: �"xA … "x�A, is a Q1K-theorem. (4) The rigidity
principle rI: t1 = t2 … �(t1 = t2) is a Q1K-theorem, and the rigidity axiom rIÿ is a Q1B-
theorem. (5) The formula �$xA … $x�A is invalid.

PROOF Exercise (see examples below; for 3 see Hughes and Cresswell 1968: 143; for 4
see Schurz 1997: fn.s 108, 109). The counterintuitivity of 5 was illustrated by Quine
(1953, p. 148) as follows: it necessary that one player will win, but for no one of the
players is it necessary that just he will win (cf. Hughes and Cresswell 1968, p. 197).

DISPROOF OF MODEL-ADMISSIBILITY OF UG By the following countermodel M = ·{w}, Ø,
{d1, d2}, VÒ with Vw(F) = {d1}. It yields M |= Fa but M |π "xFx.

PROOF OF FRAME-VALIDITY OF UG BY CONTRAPOSITION Assume ·W,RÒ |π "xFx. So there exist
D, V, w such that for M = ·W,R,D,VÒ and w Œ WM, (M,w) |π "xFx. Hence $d Œ DM:
(M[x:d],w) |π Fx. Since the model M[x:d] is based on ·W,RÒ, this implies that ·W,RÒ |π Fx.
Q.E.D.

A general definition of normal Q1MLs requires a suitable formulation of the rule of
substitution for predicates. This rule was first described by Kleene (1971: 155–62) and
is explained as follows. A substitution instance of formula A w.r.t. an n-ary predicate
Q in ‘name form variables’ z1 . . . zn is a formula A* which results from the simultane-
ous replacement of every occurrence of a term-instance Qt1 . . . tn in A** by a corre-
sponding term-instance B[t1-n/z1-n], for a given formula (‘complex predicate’) B; 
where A** is the first alphabetic variant of A in which no free variable of B other than
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z1, . . . , zn gets bound (for details see Schurz 1995: 45–52). Important in our context is
the following QML-substitution-theorem: frame-validity of Q1ML-formulas is preserved
under substitution for predicates (proof see Schurz 1997: 46–8). This theorem guar-
antees that for every frame class F, L(F ) will be closed under substitution and, hence,
will be a normal Q1-logic. Moreover, our notion of substitution allows us to define a
normal Q1-logic as any formula set L Õ LQ1 which contains Q1K and is closed under
the rules of Q1K and under substitution for predicates. Q1P denotes the lattice of
normal Q1-logics.

As in the propositional case, every L Œ Q1P is representable (but not necessarily
axiomatizable) as Q1KX. L Œ Q1P is called propositionally representable iff L = Q1KX
for some X consisting solely of propositional axiom schemata – in other words, iff L is
the Q1-counterpart of the PML KX. Propositionally representable Q1-logics are the
standard case. However, X may also contain additional quantificational (or identity)
axiom schemata – on two reasons: First, some frame-complete PMLs have frame incom-
plete Q1-counterparts, which need additional LQ1-axioms to become frame-complete
(cf. Q1S4.1 below). Second, there exist interesting cases of additional schemata 
which are only characterizable by nonstandard model-classes, such as Fine’s anti-
Haecceitistic axiom H.

Correspondence, correctness, and w./s. completeness w.r.t. models or frames (and
related notions) are defined as in the propositional case. Of course, Q1-logics do neither
have the f.m.p. w.r.t the domain, nor are they decidable, because nonmodal first-order
logic lacks these properties. Correctness of Q1-logics is proved, as usual, by showing
that all Q1L-axioms are valid on all frames, and that all Q1K-rules preserve frame-
validity; this was done above. The correctness-proof also establishes that every propo-
sitionally representable Q1-logic corresponds to the same class of frames as its
propositional counterpart. This gives us a following frame transfer theorem from PMLs
to their Q1-counterparts: For every PML KX: F(KX) = F(Q1KX). Hence, if a frame-
condition CX corresponds to KX, then it corresponds also to Q1KX.

As in non-modal QL, the domain of the canonical model of a Q1ML is constructed
from the =-equivalence classes of terms. On this reason, the canonical worlds need 
not only be maximally L-consistent formula sets, they also have to be ‘w-complete’. 
The canonical model Mc(L,D) of a Q1-logic L is explicitly relativized to a saturated
formula set D which extends the given L-consistent formula set G and fixes the rigid term
identities. Implicitly, the notion of w-completeness and the canonical model is also 
relativized to the term set J(LQ1) of the given denumerably infinite language 
LQ1.

DEFINITION OF CANONICAL Q1-MODELS (1) A formula set G Õ LQ1 is w-complete (w.r.t.
LQ1) iff for every A Œ LQ1: G �L"xA iff G�L A[t/x] for every t Œ J(LQ1); G is called L-
saturated iff it is both maximally L-consistent and w–complete. (2) The canonical model
Mc(L,D) = ·Wc, Rc, Dc, VcÒ of L Œ Q1P for the L-saturated formula set D in given
language LQ1 is defined as follows: (2.1) W is the set of all L-saturated LQ1-formula
sets w which preserve the D-identities; that is for all t1, t2: t1 = t2 Œ w iff t1 = t2 Œ D (this
ensures constant domain and rigid designators); (2.2) Rc is as in the propositional case;
(2.3) for all t Œ J, Vc(t) = {t*: t = t* Œ D}, and for all Q Œ Rn and w Œ Wc, Vw(Q) = {·Vc(t1),
. . . , Vc(tn)Ò: Qt1 . . . tn Œ w}; (2.4) D = {Vc(t): t Œ J}.
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The proof of strong model-completeness proceeds in the following three steps (this
technique was suggested by Thomason (1970)):

STEP 1: LINDENBAUM–HENKIN-SATURATION-LEMMA Every L-consistent formula set G in
language LQ1 can be extended to an L-saturated formula set D in a language LQ1*
which differs from LQ1 only in that it contains an additional denumerably infinite set
C* of new constants (i.e. C* « C(LQ1) = Ø, C(LQ1*) = C » C*). Given an enumeration
of all formulas Ao, A1 . . . in LQ1* and of all constants in C*, one defines:

Do =df G,
Dn » {An, ÿB[a/x]} (where a is the first constant in C* - C(Dn,An)),

if Gn»{An} is consistent and An is of the form ÿ"xB
Dn+1 =df { Gn » {An}, if Gn»{An} consistent and An is not of the form ÿ"xB

Gn if Gn»{An} is inconsistent
D =df »{Dn: n Œ w}

For each n, there are infinitely many new constants remaining in C* - C(Dn,An); thus
the required new constant always exists. As in the non-modal case it is proved that D
is L-saturated (Garson 1984: 271).

STEP 2 New in the quantificational case is the proof of the canonical model lemma.
This lemma now assures the existence of a formula set which is not only maximally L-
consistent, but also w-complete w.r.t. the same language LQ1* of D. For Q1-logics, this
is proved by exploiting the Barcan formula.

CANONICAL Q1-MODEL LEMMA (1) If G, S Õ LQ1, G is w-complete, and V is finite, then G
» S is w-complete. (2) Every L-consistent and w-complete formula set G can be extended
to an L-saturated set D written in the same language (i.e. the language w.r.t which G
was w-complete). (3) If ÿ�B Œ w Œ Wc(L,D), and w is L-consistent, then {A: �A Œ w}
» {ÿB} is (3.1) L-consistent, (3.2) w-complete, (thus) (3.3) has an L-saturated
extension u written in the same language, such that (3.4) for all t1, t2: t1 = t2 Œ u iff t1

= t2 Œ D. (4) "u Œ Wc(L,D): �A Œ u iff "v Œ Wc(uRcv fi A Œ v).

PROOF Exercise. Hints: For 1 see Garson (1984: 274) (his lemma 1). For 2 see Garson
(1984: 274f ) (his lemma 2). The proof constructs D as above except that it shows that
for each An of the form ÿ"xB, the required constant a exists in the old language,
because Dn is already w-complete by 1 of our lemma. The proof of our lemma 1 + 2
rests solely on classical quantifier principles. 3.1 is proved as in the propositional case.
For 3.2, see Garson (1984: 275) (his lemma 3) – this proof depends on the Barcan
formula. 3.3 follows from 3.1 + 2 by 2. For 3.4, see Garson (1984: 277f ) – this proof
uses the rigidity axiom (rIÿ) and the theorem (rI). 4: this follows from 3 as in the
propositional case.

STEP 3 It is now straightforward to prove the Q1ML-Truth Lemma: For every A Œ LQ1*
and w Œ Wc: (Mc(L,D), w)|= A iff A Œ w. Proof by induction on formula complexity
(Garson 1984: 275f; Hughes and Cresswell 1984: 84, 176). The atomic case holds by
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definition, the steps for propositional operators are as before; the only new item are the
the following steps for the identity of formulas and quantifiers: Step 3.1: t(Mc,w)|= t1 =
t2 iff vc(t1) = vc(t2) iff t1 = t2 Œ D (by definition of vc(t)) iff t1 = t2 Œ w (by def. of Wc). Step
3.2: (Mc,w)|= "xA iff "d Œ Dc: (Mc[x:d],w)|= A, iff "t Œ J(LQ1*): (Mc[x:vc(t)],w)|= A 
(by def. of Dc), iff "t Œ J(LQ1*): (Mc,w)|= A[t/x] (by coincidence lemma), iff "t Œ
J(LQ1*): A[t/x] Œ w (by induction hypothesis), iff "xA Œ w (by w-completeness of w).
Q.E.D.

Lindenbaum–Henkin and Truth Lemma establish as in the propositional case that:

Q1ML-MODEL-COMPLETENESS (1) Every normal Q1ML is strongly model-complete, and is
strongly characterized by the class of its models. (2) Q1K is canonical.

As in the propositional case, to prove that a Q1-logic L stronger than Q1K is canoni-
cal requires to show that the frame of L’s canonical model is an L-frame. It is natural
to conjecture that canonicity transfers from all propositionally representable Q1-logics to
their Q1-counterpart. This conjecture was stated as an open problem in Hughes and
Cresswell (1984: 183f ) and was (wrongly) positively answered by Garson (1984: 276),
But quite astonishingly, general canonicity transfer fails. An example of a canonical L
Œ P with a frame-incomplete Q1-counterpart is S4.1:

Q1S4.1-THEOREM (1) S4.1 is canonical. (2) Q1S4.1 is frame-incomplete. (3) Q1S4.1
+ (‡�$xA … ‡$x�A) is canonical.

PROOF For 1 see earlier. 2 is proved by showing that ‡�$xA … ‡$x�A is valid on all
S4.1-frames, but invalid in a certain nonstandard Q1S4.1-model; see Schurz (1997:
292f ), the proof is due to Kit Fine. A proof of 3 is found in Schurz (1997: 293–5).

The reason why the proof of canonicity works for S4.1 but not for Q1S4.1 is that the
first-order frame condition corresponding to S4.1 contains an existential quantifier.
This means in the propositional case that it has to be shown that a certain formula set
has a maximally consistent extension, while in the predicate logical case it has to be
shown that this formula set has a maximally consistent and w-complete extension; but
this is only possible if the additional axiom schemata (‡�$xA Æ ‡$x�A) is available.
However, the following restricted transfer theorem holds:

RESTRICTED Q1-CANONICITY-TRANSFER THEOREM (1) If a normal PML L = KX has the
subframe property (which means that L’s frames are closed under subframes), then
canonicity transfers from KX to Q1KX. (2) If L’s frames are definable by a purely
universal first-order formula, then L has the subframe property.

The proof of 1 is based on the fact that the frame of Mc(Q1KX) is isomorphic with a
subframe of Mc(KX) (see Schurz 1997: 295: for a similar result for intermediate logics
see Shimura 1993: 36). The proof of 2 is straightforward. The theorem covers the
axiom schemata D, T, 5, Altn, Ver, Triv, 0.3, because they correspond to universal first-
order formulas; moreover it covers all subframe logics in the sense of Fine (1985: 624;
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see Chagrov and Zakharyaschev 1997: 380ff ) which include, among others, KG and
KGrz. It is an open problem whether canonicity-transfer holds for larger classes of
normal Q1MLs. In lack of stronger transfer results, canonicity has to be proved for each
QML separately (see Gabbay (1976) and Bowen (1979) for various special canonicity
results).

The transfer problem from monomodal to multimodal logics exists also in the quan-
tificational case, but the propositional proof technique (§2.5) does not generalize to the
quantified case. So far, only canonicity transfer from monomodal Q1-logics to their mul-
timodal combination has been proved in Schurz (1997: 67).

Varying domains, rigid designators and free quantification: Q2-logics

The constant domain assumption implies that whatever exists in the actual world,
exists necessarily, that is in all possible worlds. Moreover, for every t Œ J, ‘t exists’ ($x(x
= t)) is a theorem of nonmodal QL. Hence, �$x(x = t) (‘t necessarily exists’) is a Q1K-
theorem for every t Œ J. This idealization is inadequate when worlds are interpreted as
possible states of the real world, because individuals do not have ‘eternal’ life. So there
is a need to develop semantics with varying domains.

In models with world-relative domains, every world w has its own domain Dw of indi-
viduals – those objects which exist in world w. Dw is the range of the quantifier at w:
"xFx is true at w iff every d Œ Dw has property F. The Barcan formula "x�A … �"xA
is now invalid: it might well be that all individuals in Dw have the property F at all worlds
v accessible from w, but some world v accessible from w has an individual in its domain
Dv which is not in Dw and does not have property F at v (i.e. not "v(Rwv fi "d Œ
Dv((M[x:d],v)|= Fx)). But also, the classical quantifier principles become problematic.
Recall that the converse Barcan formula cBF �"xA … "x�A is a theorem of every
normal modal logic with classical quantifier principles. But in models with world-
relative domains, cBF can only be valid if the condition of nested domains is satisfied:
uRv fi Du Õ Dv. In order to keep classical quantifier principles, Hughes and Cresswell
(1968: 171ff ), Gabbay (1976: 44ff ) and Bowen (1979: 8ff ) adopt this condition.

The nested domain condition is rather restrictive. For symmetric R it even implies a
constant domain for every generated model (recall syntactic Q1ML-theorem no. 5 in the
previous subsection); so the difference to Q1-logics would vanish for all QKB-
extensions with nested domains. But even if this condition is accepted, the classical
quantifier principles are problematic, at least if designators are rigid. Assume a œ Dw;
for example, a = Pegasus and w = the real world. What truth value should be given to
the sentence Fa, for example ‘Pegasus has wings,’ at world w? Since designators are
rigid, the so-called requirement of local predicates, which says that only objects which
exist at world w may be elements of predicate extensions at w, cannot avoid a conflict
with classical quantifier principles. For, if "xFx is true at worlds w, but V(a) œ Dw and
V(a) œ Vw(F), then ÿFa and hence (by classical quantifier principles) $xÿFx is true at
w, contradicting the truth of "xFx at w. A way out is to give sentences about nonexis-
tents at w no truth-value at w. This leads to a semantics with truth value gaps, which
has been developed by Hughes and Cresswell (1968: 170–3) and Gabbay (1976: 44ff ).

If truth-value gaps should be avoided, we must allow that individuals may have prop-
erties at a world without being existent at world w. For example, we must allow that
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‘Pegasus has wings’ is regarded as true at our world although Pegasus does not exist in
our world. Classical quantifier principles can then no longer be valid, for Fa Æ $xFx
comes out false at our world w. Hence, we must adopt the principles of free logic. I agree
with Garson (1984: 261) that free QMLs are the most adequate choice for models with
varying domains. In free logic, the classical UI-axiom is replaced by its free logic variant
fUI: "xA … (Et … A[t/x]); in words: ‘if all objects have property A, and t exists, then t
has property A.’ ‘Et’ is the existence predicate, defined as ‘$x(x = t).’ A like change is made
for the rule UG. A first system of this kind has been suggested by Kripke (1963b); but
Kripke only mentions this possibility (1936b: 70) and prefers to an axiomatization
which avoids formulas with constants or free variables. Fine (1978) has given an 
elaboration of this kind of free modal QL for S5, and several further systems are dis-
cussed in Garson (1984: 257, 285). We call these logics Q2-logics and define their basic
concepts as follows.

DEFINITIONS The Q2-language LQ2 is syntactically like LQ1, but it is interpreted in
different way. The existence predicate E in Q2-languages is defined by Et =df $x(x = t). An
Q2-model (based on frame ·W,RÒ) is a quintuple M = ·W,R,U,Df,VÒ, where U Ø is the total
domain of possible individuals and Df: W Æ Pow(U) is the domain function assigning to
each world w Œ W its domain Dw Õ U. Dw is called the inner domain of w (the existing
objects of w) and U–Dw the outer domain of w (the nonexisting objects of w). (One could
add the requirement U = »wŒWDw; but this would not bring new theorems; see Schurz
(1997: 198).) The valuation function for terms and predicates and the truth clauses 
for atomic formulas, identity formulas, and propositionally compound formulas are as
in Q1-logics. The only new clauses concern quantification: (M, w) |="xA iff for every 
d Œ Dw, (M[x:d],w) |= A. This yields for the existence predicate: (M,w) |= Et iff v(t) Œ Dw.

The minimal normal Q2-logic, Q2K, is axiomatically defined like K1 except that (1)
the axiom schema BF is dropped, (2) the axiom UI is replaced by its free version fUI: "xA
Æ (Ey Æ A[t/x]), and (3) the rule UG is replaced by its free version fUG: Ex Æ A/"xA
(Garson 1984: 252; Fine 1978: 131f, suggests an equivalent axiomatization which
keeps UR and adds ‘"xEx’). Exercise: Prove the duals fEI: (Et Ÿ A[t/x]) … $xA, and fEG:
A Ÿ Ex … B/$xA … B, provided xœVf(B). L is a normal Q2-logics, (L Œ Q2P) iff L extends
Q2K and is closed under the rules of Q2K and under substitution for nonlogical 
predicates. As before, every L Œ Q2P is representable as Q2KX. The strategy of proving
model-completeness which was used for Q1-logics fails for Q2-logics, because the Barcan
formula is missing which allowed us to construct saturated sets in the same language.
Fine (1978: 131–5) gives a proof of canonicity for Q2S5 based on so-called nice dia-
grams (these are saturated sets of formula-world pairs). As far as I can see, this tech-
nique generalizes to all Q2-logics containing Q2B, but not to all Q2-logics. A general
proof of model-completeness via a canonical model construction is possible by replac-
ing the rule (fUG) by the following stronger rule. A G-function is a function G: LQ2 Æ
LQ2 which assigns to each A Œ LQ2 a formula of the form G(A):= B0 Æ �(B1 Æ �(B2

Æ . . . �(Bn Æ A) . . .), for given B0, B1, . . . ,Bn (n, 0) where B0 may be missing. The
stronger rule is:

GUG: G(Ex Æ Ax)/G("xA), provided x œ Vf(G("xA)
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With minor simplifications I am following Garson (1984: 282ff; Garson also replaces
fUI by GUI, but this replacement is redundant; see Schurz 1997: 199f ). GUG preserves
frame-validity and, thus, is correct w.r.t. the class of Q2-models. GUG also covers also
rule (fUG*) (recall §3.1), and thus, it implies the axioms "1 + 2. A Q2-logic where UG
+ "1 + 2 are replaced by GUG is called a QG2-logic. Model-completeness of QG2-logics
can be proved similar as for Q1-logics. The worlds of the canonical model Mc(L,D} (in
given LQ2*) are now all G-saturated formula sets; these are all maximally L-consistent
formula sets G which are G-complete: G �L G("xA) iff G �L G(Et … A[t/x]) for every t Œ
J*. The proof proceeds through the same steps as before; due to the stronger G-rule it
can be proved, without BF, that for every w Œ Wc with ÿ�B Œ w, {A: �A Õ w} » {ÿB}
can be extended to a G-saturated set in the same language. For terms and predicates,
Rc and Vc are defined as before; Uc = {Vc(t): t Œ J*}, Dfc: W Æ Pow(Uc) such that Dc(w)
= {Vc(t): Et Œ D}. We thus obtain the QG2ML-model-completeness-theorem: Every QG2-
logic L is correct and strongly complete w.r.t. the class of its Q2-models, and Q2GK is
canonical.

Garson (1984: 284f ) claims it as an open problem if and to which extent the rule
GUG is indeed stronger than UG. Schurz (1997: 200) gives a partial answer, by proving
the GUG-Theorem: In all Q2-logics which contain B, GUG is admissible. Hence, all
normal extensions of Q2B are strongly model-complete. It is an open problem whether
there exist model-incomplete Q2MLs that don’t extend Q2B.

Concerning frame-completeness, the same restricted tranfer result as for Q1-logics
can be proved for propositionally representable Q(G)2-logics. Schurz (1997: 201f )
defines a translation function t: LQ2 Æ LQ1 which translates Q2-formulas into seman-
tically equivalent Q1-formulas, and Q2-models into corresponding Q1-models. An
inverse translation is impossible: the LQ1-quantifier figures like a possibilistic quantifier
for translated LQ2-logics; thus LQ1 has greater expressive power than LQ2. With the
help of this translation function, various transfer theorems from Q1- to Q2-logics are
established; in particular the following frame-transfer: for every L Œ Q2P: F(L) = F(t(L)),
where t(L) is the Q1-translation of Q2-logic L. If X is propositional, then t(X) = X; hence
propositionally representable Q2-logics have the same frame-classes as their Q1-coun-
terparts. Whether transfer of frame-completeness from Q1MLs to Q2MLs is possible
remains an open problem (Schurz 1997: 204).

Nonrigid designators, counterpart theory, 
and worldline semantics: Q3-logics

Rigid designators presuppose that the fixation of their reference does not depend on
any contingent property of the individual to which they refer. This may be true for
mathematical objects such as ‘7’ or ‘9’ (Kripke 1972 uses them often as illustrations),
but is it possibly true for empirical objects? According to Putnam’s famous account of
meaning (1975), the fixation of rigid reference is based (1) on an indexical relation of
direct acquaintance with the individual in the present (hic et nunc) state (the act of ‘bab-
tizing’), and (2) on a unique relation of causal successorship or predecessorship.
Accordingly, there are two problems with that account. Concerning (2), nothing guar-
antees that the relation of predecessor- or successorship in past and future states is
uniquely determined. Take Frege’s old example of the morning and the evening star,
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both of which are identical with the planet Venus: assume that in some future time,
Venus splits into two planets, one appearing only at the morning and the other in the
evening, then, to what objects will the names ‘morning star’ and ‘evening star’ refer 
in that distant future state? (A more realistic example is the process of cell division.)
And concerning (1), the relation of ‘acquaintance’ in the act of ‘baptizing’ is never
absolutely ‘direct’ but always mediated through contingent properties.

Hintikka (1961) and Kanger (1957b) have already made suggestions for QMLs with
non-rigid designators, in short: nonrigid QMLs (also see Hughes and Cresswell 1968:
195). Syntactically, the axiom rIÿ has to be dropped for nonrigid QMLs, and the rigid
principle of substitution of identicals rISub must be restricted to nonmodal formulas as
follows:

ISub: t1 = t2 … (A[t1/x] … A[t2/x]), provided A does not contain ‘� ’.

As a result, the identity theorems of nonrigid QMLs are no longer closed under the
unrestricted rule of substitution for predicates. They are still closed under substitution
of arbitrary nonmodal formulas for predicates (cf. Schurz 1997: 221).

Semantically, nonrigid designators require a world-relativization of the valuation
functions for terms; v: J ¥ W Æ U where v(t,w) =df vw(t) is the extension of term t at
world w, and the partial function v(t): W Æ U such that v(t)(w) = vw(t) is the intension
of term t. The debate between Kripke and Lewis, whether individuals in different worlds
are strictly identical (Kripke) or merely counterparts of each other (Lewis), is logically
less decisive than one might think. Rigid designator axioms are also adequately char-
acterized by the unique counterpart view, according to which every individual possesses
a unique counterpart in every possible world (see also Forbes 1985: 60ff ). We just have
to assume that the valuation function v assigns to each term t and world w a pair ·d,wÒ,
which stands for the world-relativized individual d-in-w, such that the domain compo-
nent ‘d’ of this pair is the same in all worlds. Then, each world w has its own domain
D ¥ {w} and each world-relativized individual ·d,wÒ has a unique counterpart ·d,uÒ in
each world u Œ W. The resulting logic would be Q1ML (but the same modification can
be made for Q2MLs). Hence, the important point of a semantics for nonrigid designa-
tors, which do not obey rigid identity axioms, is the assumption of a counterpart rela-
tion which is not unique.

The real problem of nonrigid designators is the semantical interpretation of quanti-
fied de re formulas. Take, for example, (M,w) |= $x�Fx. This means formally that there
exists d Œ Dw such that for all w-accessible worlds v: (M[x:d],v) |= Fx. But how do we
define the x-variation V[x:d] of VM if designators are non-rigid? The most simple possi-
bility would be to assume that V[x:d] assigns d to x in all worlds. In the effect, this means
that variables are interpreted as rigid designators; only constants are nonrigid. This
option is chosen by Thomason (1970). However, the free quantification axiom (fUI)
becomes invalid in these systems: from the (fEG)-instance �(t = t) Ÿ Et … $x�(x = t) the
formula Et … $x�(x = t) is provable, though it is invalid, because it requires t to have
the same extension at all accessible worlds, which need not be the case (Garson 1984:
262). Hintikka (1970) suggests to replace (fUI) by a complicated instantiation rule,
which in case of Thomason’s system Q3-S4 reduces to "xA … (�Et … A[x/t]) (Garson
1984: 263); generalized completeness proofs for these kinds of systems have not been
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found. A possibility of handling systems with rigid variables and nonrigid constants,
elaborated by Bowen (1979), is to assume that terms are local, that is that their exten-
sions at worlds always exist in that world; this locality option becomes available when
terms are nonrigid. Bowen also accepts the nested domain condition, with the result
that classical quantification principles are valid in his systems, and generalized proofs
of model-completeness are possible.

All systems with rigid variables contain the theorem "x"y(x = y … �x ∫ y), which
a strict defender of nonrigidity wants to avoid. Another possibility of defining v[x:d]
would be to allow V[x:d] to be any function from W into D, satisfying only the restric-
tion that Vw(x) = d. In counterpart terminology, this means that anything may count
as a counterpart of d in other worlds. This semantics corresponds to Garson’s concep-
tual interpretation (1984: 266). Apart from the resulting incompleteness (Garson
1984: 266), this semantics validates the counterintuitive formula �$xFx … $x�Fx,
which is a clear reason to reject it (Hughes and Cresswell 1968: 197f ).

What one needs is a way to restrict the ‘allowed’ functions over which v[x:d] may
range, and the natural way to do this is by way of a counterpart relation which specifies
the counterparts of d Œ Dw in all w-accessible worlds. This account has been developed
by Lewis (1968), though not within the framework of modal logic but within that of
ordinary first-order logic, and by assuming universal frames. Specifically, Lewis intro-
duces the predicates Ww for ‘w is a world,’ ‘Ixw’ for ‘object x exists in world w,’ and Cxy
for ‘y is a counterpart of x.’ The counterpart relation need neither be symmetric nor
transitive. Let us present Lewis’ theory in the framework of modal logic, interpreting
Cxy as ‘y is a counterpart of x in a world w accessible from x’s world.’ Then Lewis’ pro-
posed semantical interpretation of de re sentences can be reformulated in this way
(1968: 118):

(M[x1-n:d1-n],u) |= �A iff for all w-accessible worlds v and all d¢1, . . . , d¢n such that each
d¢i is a counterpart of di in v, (M[x1-n:d¢1-n],v) |= A.

(M[x1-n:d1-n],u) |= ‡A iff for some w-accessible worlds v and some d¢1, . . . , d¢n such that
each d¢i is a counterpart of di in v, (M[x1-n:d¢1-n],v) |= A.

For terms: (M,u) |= oA[t1/x1, . . . , tn/xn] iff (M[x1-n:v(t1-n)],u) |= oA, with o Œ {�,‡};
i.e., iff for all/some w-accessible worlds v and all/some d1, . . . ,
dn such that each di is a counterpart of ti’s extension at w in v,
(M[x1-n:d¢1-n],v) |= A.

The problem is that Lewis’ counterpart theory, if taken as a semantics for modal logic,
is logically not well-behaved. It is not closed under substitution, even not substitution
of atomic formulas for propositional variables. For example, �p … ��p will be valid on
a transitive frame, yet �Ft … ��Ft might be invalid in a Lewis model imposed on that
frame, because the counterpart relation need not be transitive. More drastically,
Wollaston (1994) shows that Lewis’ semantics invalidates the modal principles K and
M, and even the nonmodal principle UI. Ghilardi (1991) has developed a semantics for
nonrigid QML which adopts the nested domain condition and models counterpart rela-
tions as functions c: Du Æ Dv for uRv. His systems are logically well-behaved, but he
obtains drastic incompleteness results; for example the QML Altn is incomplete in his
semantics, though canonical in our Q1-, Q2- and Q3-semantics (cf. corollary 7.5 of
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Ghilardi). More recently, Skvortsov and Shehtman (1993) have introduced a new kind
of frame semantics, so-called metaframe semantics, which is a generalization of
Ghilardi’s functor semantics. They are able to show that completeness w.r.t. metaframes
generally transfers from a PML to its quantificational counterpart. Technically, this is a
great success. However, metaframe semantics is not based on domains of individuals,
but on domains of ‘abstract’ n-tuples which are not reducible to the nth Cartesian
product of an ordinary domain. So far, no one has given a philosophically transparent
interpretation of metaframe semantics.

The philosophically more transparent alternative is the substantial interpretation of
quantifiers, where quantifiers do not range over objects (term extensions), but over
functions from worlds into objects (term intensions). This suggestion has been intro-
duced by Hughes and Cresswell (1968: 198ff ) and is extensively elaborated in Garson
(1984: 267ff ); specifically in his system QS. One assumes here, for each world, a set of
term intensions, that is functions from W to D, which are the ‘substances’ which exist
at that world; quantifiers range over these term intensions. Schurz (1997) shows that
with some modifications, Garson’s semantics can be reinterpreted from the objectual
view as a certain kind of counterpart semantics, so-called world-line semantics. We call
the logics based on it Q3-logics, and explain it as follows.

A ‘term-intension,’ that is a function l:W Æ U is called a worldline (in analogy to
wordlines in Minkowski’s space–time diagrams). A worldline l lands object d at world w
if l(w) = d. The important component of Q3-models is a set L of worldlines (‘substances’)
which specifies the possible term intensions. L determines a four-placed counterpart
relation ‘object d1 in u has d2 as a counterpart in v’ defined as follows: there exists a
worldline in L which lands d1 at u and d2 at v. For each w Œ W, Uw is the set of objects
landed by some wordline at w, that is, the set of all w-counterparts of possible objects.
Predicate extensions at w are taken from Uw. To obtain a free logic version of this seman-
tics we also need a domain function Df which assigns to each world w a subset Dw Õ
Uw of objects existing in w. The world-specific sets of worldlines Lw over which quanti-
fiers range are given as the set of worldlines which land some object in Dw.

Q3ML-DEFINITIONS The Q3-language LQ3 is syntactically like an LQ1-language; the
existence predicate E is defined as in LQ2. A Q3-model based on a frame ·W,RÒ is a 6-
tupe ·W,R,L,U,Df,VÒ, with Ø π L Õ {l:W Æ U} a nonempty set of possible worldlines,
where U π Ø is a nonempty set of possible objects; Df: W Æ U such that Df(w) =df Dw Õ
Uw is the domain function, where Uw =df {d Œ U: $l Œ L(l(w) = d)} is the set of term-
extensions at w. We define Lw =df {l Œ L: $d Œ Dw(l(w) = d)}. Concerning V: for each t Œ
J, V(t) Œ L; and for each n-ary Q Œ Rn, Vw(Q) Õ Uw

n. M[x:l] denotes a model which is
like M except that it assigns the wordline l to x. The truth clauses are as follows: (i) (M,w)
|= Qt1 . . . tn iff ·Vw(t1), . . . , Vw(tn)Ò Œ Vw(Q); (M,w) |= t1 = t2 iff Vw(t1) = Vw(t2); for
propositional operators as before; and for the quantifier: (M,w) |= "xA iff for all l Œ Lw,
(M[x:l],w) |= A; this yields (M,w) |= Et iff Vw(t) Œ Dw for the existence predicate.

Worldline semantics is fully compatible with the objectual view. Identity and 
existence statements depend only on the extensions of terms. The truth clauses for
quantifiers may be rephrased in Lewis’ counterpart style where quantifiers range over
objects as follows: (M,w) |= "xA [$xA] iff for all [some, resp.] d Œ Dw and l Œ L such that
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Vw(l) = d: (M[x:l],w)|= A. For each particular formula, the quantification over worldlines
is eliminable, for example: (M,u) |= "x�Fx [$x‡Fx] iff for all [some, resp.] d Œ Dw , 
w-accessible world(s) v, and v-counterpart(s) d¢ of d: d¢ is in Vv(F).

The essential difference to Lewis’ counterpart semantics is threefold. First, the coun-
terpart relation defined by worldlines is symmetric and obeys further structural prop-
erties which are not satisfied by Lewis’ counterpart relation. Second, quantification over
counterparts is in worldline semantics governed by the quantifier, but in Lewis’ seman-
tics governed by the modal operator. The de re formulas "x�Fx and $x‡Fx are evalu-
ated in the same way, but the de re formulas "x‡Fx and $x�Fx are evaluated differently:
in Lewis semantics, (M,w) |= "x‡Fx iff for every d Œ Dw there exists some w-accessible
world u such that some counterpart d¢ of d in u is in Vu(F), while in worldline seman-
tics, (M,w) |= "x‡Fx iff for every d Œ Dw there exists some w-accessible world u such that
every counterpart d¢ of d in u is in Vu(F). Likewise for the formula "x�Fx. Third, Lewis’
semantics does not assign wordlines (term intensions) to terms t, but quantifies over
the counterparts of term extensions Vw(t) in de re scopes, while wordline semantics
determines the counterparts of Vw(t) by their wordlines l(t). For example, assume Dudu
is the name of an amoeba a at world w which in all accessible worlds u splits up into
two, namely b and c, where b keeps alive and c is dying in u, and we decide that Dudu
should name b (but not c) at all w-accessible u. Then the sentence ‘necessarily Dudu is
alive’ is true in worldline semantics, but false in Lewis style counterpart semantics. Note
finally that the language of worldline semantics has a greater expressive power than
that of Lewis’ counterpart semantics. Lewis’ modal operators (�L, ‡L) are definable
within worldline semantics as follows (Schurz 1997: 222):

�L A[t1-n/x1-n] =df "y1-n(Ÿ{ti = yi: 1 £ i £ n} … �A[y1-n/x1-n]), and
‡A[t1-n/x1-n]:= $y1-n(Ÿ{ti = yi: 1 £ i £ n} Ÿ ‡A[y1-n/x1-n]), where x1, . . . , xn = T(A).

The essential difference of worldline semantics as compared to Garson’s substantial
semantics is that Garson does not define the world-relative sets of worldlines (‘sub-
stances’) Lw by the extension of an ordinary existence predicate, as we did, but he intro-
duces them directly, without such a predicate, and the truth clause of his existence
predicate is: (M,w) |= Et iff v(t) Œ Lw (Garson 1984: 279). This turns his existence pred-
icate into an ‘intensional’ one which contains as its world-specific extension a set of
term intensions. As a result, substitution of E in the identity axiom (ISub) is not allowed
in Garson’s system (1984: 268); though it is allowed in our system. Besides this greater
simplicity, it seems to be philosophically more intuitive not to assume world-specifics set
Lw as a primitive notion, for the existence of worldlines (‘substances’) is not a contin-
gent matter; only the existence of objects is contingent.

The logic Q3K is defined like Q2K except that the rigid identity axiom rIÿ is dropped
and rISub is replaced by ISub above. ISub is only closed under restricted substitution
for predicates, while the other axiom schemata are closed under general substitution.
On this reason, normal Q3-logics cannot be defined as before. We rather have to define
a normal Q3-logic as a subset L Õ LQ3 which is representable as Q3KX, that is it con-
tains all axioms (not merely the schemata) of Q3K, is closed under the rules of Q3KX
(TautR, fUG, N) and contains all (unrestricted substitution) instances of the additional
set of axiom schemata X, except for additional identity axioms in X to which only non-
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modal substitution applies (Schurz 1997: 221). The canonical model Mc(L) of a Q3ML
L need no longer be relativized to an initial saturated set D which determines rigid iden-
tities. It is defined as ·Wc,Rc,Lc,Uc,Dfc,VcÒ, where Wc is now the set of all G-saturated
formula sets, Rc is an s usual, and Vc(t): Wc Æ Uc is such that Vc,w(t) = {t¢ Œ J*: t = t¢ Œ
w}, Uc = {Vc,w(t): w Œ W,t Œ J*}, Lc = {Vc(t): t Œ J*}, Dfc:Wc Æ Pow(Uc) such that Df(w)
= {Vc(t): t Œ J*, Et Œ w}. Model-completeness is proved with help of the stronger G-rule
GUG in the same way as for Q2-logics (Garson 1984: 282ff ). We thus arrive at the
QG3ML-model-completeness-theorem: all normal QG3MLs are adequately characterized
by the class of their models, and Q3K is canonical. Q(G)3-logics behave similar as Q2-
logics: we can show that GUG is admissible in all normal extensions of Q3B, that
restricted canonicity-transfer holds, and that the frames of Q3-logics are the same as
their Q1-counterparts (Schurz 1997: ch. 10.8–10). A different technique proves
model-completeness for Q3-logics by introducing for each canonical world a new set of
constants. This proof avoids the stronger G-rules, but it is not completely general:
certain properties of the canonical frame cannot be proved in the standard way because
canonical worlds don’t share the same language (Garson 1984: 276–81).
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