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Modal Logic

J O H A N VA N B E N T H E M

1 Enriching Extensional Logic with Intensional Notions

When Frege wrote Begriffsschrift, he intentionally left out the key intensional notions
of traditional logic before him. On one telling page he enumerates a list of things for
which he sees no need – and readers of some erudition will recognize this anonymous
enemy as Kant’s famous “Table of Categories”, including Modality. Nevertheless, in this
century modal notions made their way back onto the logical agenda, leading to exten-
sions of classical systems with operators of necessity, possibility, entailment, and other
metaphysically inspired notions. These formalisms were influential as a tool for 
analyzing philosophical arguments. I still recall the shudder when reading my first
sequences of symbols claiming to be a proof of God’s existence ‘out of a box.’ But also,
the semantics of modal logics in terms of possible worlds has formed a powerful philo-
sophical union with the ontologies of Kripke and Lewis. These motivations also 
provided a watershed from mathematical logic, whose practitioners disliked modal logic
instinctively, even though they are willing to countenance such deviations as intu-
itionistic or quantum logic. But worse than that, by the early 1980s, modal logic had
also acquired powerful enemies within philosophy, preaching its imminent demise. I
remember sneaking through corridors in those days, avoiding encounters with ener-
getic colleagues who might be tempted to lend a helping hand to Historical Necessity.
But modal logic did not die, its enemies never managed to invent an equally powerful
substitute, its content and uses rather multiplied, and Handbooks wisely still include
the subject.

2 Changing Views of Modal Logic

In what follows, I present a modern account of modal logic – not as a metaphysical
system of any sort, but as a logical ‘fine-structure formalism’ for talking about actions,
knowledge, and many other concrete things all around us. This view is very different
from the original motivation in ‘philosophical logic,’ and I do not claim that it is uncon-
troversial in that field, especially among the ancien regime. But it is about time that a
broader community learns what is really going on.



We have come a long way since the 1960s, because of two separate developments.
First, what happened is a familiar phenomenon in science: originally non-intended
applications of a theory take over. In the case of modal logic, these started with tem-
poral and epistemic logic, then we had spatial logics, dynamic logics of action, and by
now also modal logics of grammatical derivation, generalized quantifiers, games, or
concept descriptions in AI. And this expansion is going on all the time. These applica-
tions provide new impetus to modal logic, at a time when it seems fair to say that ontol-
ogy is no longer a live source of inspiration. A second influence came from inside modal
logic. The mathematical theory of the subject that began to flourish in the 1970s
yielded (as abstract mathematics should) surprising new viewpoints on what makes
modal languages tick, which generated different perspectives – and in the end, a start-
ling inversion. Viewed in one way, modal logics are typically extensions of classical logic
with new operators. Viewed in another, and perhaps ultimately more insightful way,
modal logics are fragments of classical logical languages, that serve as milestones in a
natural ‘fine-structure hierarchy’ of expressiveness and reasoning.

Out of this historical panorama, we choose three notions as our major themes, viz.
fine-structure, information, and dynamics. These will be introduced by looking at the basic
modal language: propositional logic with box � and diamond ‡. But first, let us mention
another characteristic of much modal research: its exotic landscapes of different logics,
such as K, T, S4, S5, or more bizarre code names. This seems a huge difference with a
monotheistic religion like classical logic, which has only one set of validities – and hence
many people associate modal logic with heathen botany. Now, the mathematical theory
of the 1970s did create more unity in what has been called the ‘jungle of modal logics.’
Powerful meta-theorems appeared establishing properties like decidability, interpola-
tion, frame-correspondence or completeness for whole families of ‘modal logics’ at
once, or locating systematic failures – using methods from universal algebra and model
theory. Nevertheless, and more controversially than our stance so far, we think this
diversity is not a fundamental characteristic of the modal way of life – even though it is
certainly one of its useful conveniences. Such ‘logics’ are different modal theories of
special types of accessibility relation, comparable to special theories formulated on top
of classical predicate logic. Our exposition will therefore concentrate on modal base lan-
guages and their properties, with an occasional excursion into the special frame classes
of this other dimension of research.

3 A Précis of Basic Modal Logic

Language and interpretation

The basic modal language is very simple, and yet it has been a useful laboratory for new
basic techniques. We interpret formulas in so-called possible worlds models – the grand
name is still popular for its nostalgic mood – M = (W, R, V), according to the well-known
truth definition:

M, s |= ‡A iff for some t with Rst, M, t |=A
M, s |= �A iff for all t with Rst, M, t |=A
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It helps to think of the worlds as ‘states’ of some kind, while accessibility encodes 
possible moves that can be made to get from one state to another. But there are many
other useful concrete views of these, in essence, ‘decorated graphs’ (figure 26.1).

Invariance for Bisimulation

The expressive power of this language is measured by a suitable notion of similarity
between different models.

DEFINITION A bisimulation between two models M, N is a binary relation E between
their states m, n s.t. whenever m E n, then (a) m, n satisfy the same proposition letters,
(b1) if m R m¢ , then there exists a world n¢ with n R n¢ and m¢ E n¢, (b2) the same ‘zigzag
clause’ holds in the opposite direction.

Together, this ‘atomic harmony’ and the two zigzag clauses make bisimulation a natural
notion of ‘process equivalence’ – and indeed it was independently discovered in com-
puter science. Example (disregarding proposition letters): the two black worlds in M, N
are connected by the drawn bisimulation, consisting of all the matches indicated by
dotted lines – but there is no bisimulation which includes a match between the black
worlds in N and K (figure 26.2).

INVARIANCE LEMMA If E is a bisimulation between M and N, and m E n , then m, n
satisfy the same modal formulas.

That is, modal formulas are invariant for bisimulation. Thus, we can see the above failure
of bisimulation by noting that the model in the middle satisfies the formula

‡‡�^

in its root, whereas the one to the right does not. The converse to the Lemma only holds
for a modal language with arbitrary infinite conjunctions and disjunction – or for the
plain modal language over special models. For instance:

PROPOSITION If m, n satisfy the same modal formulas in finite models M, N, then there
is a bisimulation E between these with m E n.
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But there are still stronger definability results. For example, for any model M, s with a
designated world s, there is an infinitary modal formula fM,s true in only those models
N, t which are ‘bisimilar’ to M, s (i.e. some bisimulation links t to s).

Validity and proof systems

Universal validity is axiomatized in Hilbert-style by the so-called minimal modal logic:

1. all laws of propositional logic
2. a definition of ‡f as ÿ�ÿf
3. the modal distribution axiom �(f Æ Y) Æ (�f Æ �Y)
4. the necessitation rule ‘if �f, then ��f’

This looks like a standard axiomatization of first-order logic (with � as ", and ‡ as $),
but leaving out axioms with tricky side conditions on freedom and bondage: "xf Æ
[t/x] f and f Æ "xf. Modal deduction, either axiomatic or in other proof formats
(sequents, natural deduction), is simple reasoning in perspicuous notation.

Modal logic games

Not intrinsic to modal logic, but a pleasant dynamic trend is this. All our notions have
fine-structure as games. In an evaluation game, players Verifier (V) and Falsifier (F) dis-
agree about a formula. Disjunction is a choice for V, conjunction for F, negation is role
switch, ‡ makes V pick a successor of the current world, � does the same for F. A game
p is won by Verifier if the atom p holds in the current state, otherwise by Falsifier. A
player also wins the game if the other player must move, for a modality, but cannot.

FACT M, s |= f iff Verifier has a winning strategy
for the f-game in M starting from s.

For example, our first model picture induces the following game tree for formula ‡�‡p
starting from state 1, with bold-face indicating the winning positions for Verifier (figure
26.3).

In this game, V has two winning strategies: ‘left,’ and ‘right,’ ·‘right,’ ‘down’Ò. These
are indeed the two possible successful ways of verifying formula ‡�‡p in the given
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model M at world 1. Likewise, there are model comparison games between Duplicator
(maintaining an analogy) and Spoiler (claiming a difference), playing over pairs (m, n)
in two models M, N. These provide a fine-structured way of checking for the earlier
bisimulation. In each round Spoiler chooses a state x in one model which is a succes-
sor of m or n, Duplicator responds with a corresponding successor y in the other model.
If x, y are different in their atomic properties, Spoiler wins – if Duplicator cannot find
a matching successor: likewise.

For example, in the non-bisimulation example N, K in figure 26.2, starting from a
match between the two black worlds, Spoiler needs 3 rounds to win: forcing Duplicator
in 2 rounds into a match where one world has no successor, while the other does.

FACT (a) Spoiler’s winning strategies in a k-round game between M, s, N, t match the
modal formulas of operator depth k on which s, t disagree. (b) Duplicator’s
winning strategies over an infinite round game between M, s , N, t match the
bisimulations between them linking s to t.

One winning strategy for Spoiler in the preceding example exploits the earlier ‘differ-
ence formula’ ‡‡�^. Many other logical notions can be ‘gamified’. In particular, there
are construction games determining if a given formula has a model, or proof games
finding a derivation of it through a dialogue between two players.

Decidability and complexity

The basic modal language is a decidable ‘miniature’ of first-order logic. There are many
decision methods for validity or satisfiability, exploiting special features of modal for-
mulas – each with their virtues in generalization. Well-known methods are ‘selection,’
‘filtration,’ and ‘reduction.’

The deeper underlying issue is the precise computational complexity of various key
tasks for a logic. These include not just satisfiability or validity testing, but also model
checking and model comparison. Here are some landmark observations.

MODEL CHECKING Given a finite model M, s and a modal formula f, checking if M, s |=
f takes polynomial time in length(f) + size(M) .

This is better than for first-order logic, where the same task takes polynomial space.

SATISFIABILITY Checking if a given modal formula has a model takes polynomial space
in the size of the given formula.
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For propositional logic the same task takes just non-deterministic polynomial time. For
the full first-order language, of course, it is undecidable.

MODEL COMPARISON Checking if there is a bisimulation between given finite M, s, N, t
takes polynomial time in the size of these models.

This may look surprising, but simple algorithms exist throwing out successive pairs of
worlds that cannot make any bisimulation. These benchmark complexity outcomes
may differ as modal languages are varied, allowing us to detect ‘jumps.’ Complexity
awareness is a new feature of increasing importance in logic.

Model theory

The model theory of basic modal logic is much like that of first-order logic: with 
classical highlights such as Craig interpolation, Los–Tarski preservation theorem for
universal modal formulas, etc. The analogy gets lost for many special modal logics,
where for example interpolation is much scarcer.

Translation

Modal operators behave much like first-order quantifiers. The following translation T
takes all modal formulas f to first-order formulas T(f) with one free variable x having
the same truth conditions on models M, s:

(a) T(p) = Px,
(b) T commutes with all the Boolean operators,
(c) T(‡f) = $y (Rxy & [y/x]T(f)), T(�f) = "y (Rxy Æ [y/x]T(f))

With some care, only two variables x, y are needed in all these first-order translations
(free or bound). E.g. �‡�p translates faithfully into the formula

"y (Rxy Æ $x(Ryx & "y(Rxy Æ Py))).

Here is the essential semantic feature that makes these translated modal formulas
special inside the full first-order language over R2, P1, Q1, . . .

MODAL INVARIANCE THEOREM The following assertions are equivalent for all first-order
formulas f = f (x): (a) f is equivalent to a translated modal formula, (b) f is invariant
for bisimulations.

The ‘modal fragment’ is a small fragment of FOL, sharing its ‘nice’ properties, but
remaining decidable. What you get for free on this view are ‘universal’ properties of
first-order formulas, such as the Löwenheim–Skolem Theorem. Not for free is, for
example, the Interpolation Theorem: modal consequences might have non-modal first-
order interpolants: honest work is required to show that indeed modal interpolants exist.
The fragmentist perspective is general: many other modal languages live inside first-
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order logic or other standard logics, under some translation transcribing their standard
semantics. We will see later what makes these fragments so well-behaved.

Landscapism

On top of the minimal logic, there are uncountably many different ‘modal logics.’ This
landscape has two major highways: because of this

THEOREM Every normal modal logic is either a subset of the logic Id (with characteristic 
axiom f ´ �f) or of Un (axiom �^).

On the former road lie the usual systems like T, S4, S5, on the latter, for example,
‘Gödel–Löb logic’ of arithmetical provability axiomatized by �(�f Æ f) Æ �f. Modal
logics in this landscape can be studied by proof-theoretic or semantic methods, with a
flourishing industry of completeness theorems providing bridges between the two.

Completeness

A typical modal completeness theorem runs like this.

THEOREM A formula is provable in K4 (K plus the axiom �f Æ ��f) iff it is true in
all models whose accessibility relation is transitive.

There are many techniques for proving such results, ranging from simple inspection of
the Henkin model of all complete theories in the logic to drastic ‘model surgery.’ The
motivation for completeness theorems can come from two directions. Either one has a
pre-existing logic given by axioms and rules (such as the above cases), and seeks a useful
corresponding model class – or one has a natural model class (say, some interesting
space–time structure), and wishes to axiomatize its modal validities for ‘simple reason-
ing.’ The literature is replete with both. In this survey, we do not pursue this complete-
ness line, since it gets so much exposure anyway.

Correspondence

The preceding correspondence between modal axioms and properties of the accessibil-
ity relation is a major attraction of modal logic. It can also be studied directly in the
semantics, calling a modal formula true in a frame (a model stripped of its valuation) if
it holds under all valuations. This line of research has produced two key results of a
model-theoretic nature:

THEOREM A modal formula defines a first-order frame-property iff it is preserved under
taking ‘ultrapowers’ of frames.

THEOREM A first-order frame-property is modally definable iff it is preserved under
taking (a) ‘generated subframes,’ (b) ‘p-morphic frame images,’ (c) ‘disjoint unions,’
and (d) ‘inverse ultrafilter extensions.’
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Known non-first-order modal principles are the McKinsey Axiom �‡p Æ ‡�p, and the
earlier-mentioned Gödel–Löb Axiom. Useful in practice is the Sahlqvist Theorem, describ-
ing an effective method for constructing first-order equivalents for most widely used
modal axioms, which has by now reached the world of automated theorem proving. It
proceeds by substituting first-order descriptions of ‘minimal valuations’ into a modal
axiom to get a natural first-order equivalent (if available).

EXAMPLE The above K4 axiom �p Æ ��p has a first-order translation "y (Rxy Æ Py)
Æ "y (Rxy Æ "z (Ryz Æ Pz)). A minimal valuation for p making the antecedent true
is Pu := Rxu. Substituting this into our formula, and dropping the then tautologically
true antecedent, we are left with a consequent of the syntactic form "y (Rxy Æ "z (Ryz
Æ Rxz))), which is precisely frame transitivity.

In a sense this whole mathematical theory is a study of simple modal fragments of the
complex realm of second-order logic, a perspective we will not pursue here.

The basic modal language has limited expressive power. But it has been the main
mathematical laboratory for notions, techniques, and results. In what follows here, we
look at some modern extensions, and new basic issues to which these give rise.

4 The Major Applications

Contemporary ‘applications’ of modal logic are not routine uses of existing notions and
techniques: they add things not dreamed of in the original framework. This short article
cannot really do justice to the variety of developments here. Here are some major direc-
tions that are arguably most influential in the ‘drift’ of the field.

Epistemic logic

Propositional attitudes like knowledge show logical behavior like that of ontological
modalities. In particular, the epistemic operator

Kif ‘agent i knows that f’ is like a universal modality stating that f is true in all of
i’s epistemically indistinguishable situations.

And the same is true to some extent for other epistemic propositional attitudes, such as
‘belief.’ On this view, accessibilities are often equivalence relations for each agent –
though alternatives exist. Languages like this express basic epistemic statement 
patterns that we often use in natural discourse, such as

Kif ⁄ Ki ÿ f ‘agent i knows whether f is the case’

and modal axioms acquire a new flavor:

Kif Æ Ki Kif ‘positive introspection’
ÿKif Æ Ki Ki ÿ f ‘negative introspection’
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But the major new theme in this epistemic setting is a ‘social one.’ It is not the Lonely
Thinker that is essential to understanding cognition, but interaction between different
agents in a group: KiKjf or KiÿKjf. What I know about your knowledge or ignorance is
crucial, both to my understanding and to my actions. (For example, I might empty your
safe tonight if I think you don’t know that I know the combination.) Some forms of
‘group knowledge’ even transcend simple iterations of individual knowledge assertions.
The central example here is common knowledge: if everyone knows that your partner is
unfaithful, but no more, you have private embarrassment – if it is common knowledge,
you have public shame and perhaps a need for violent action. Technically, common
knowledge works as follows:

CGf f holds at every world reachable via any finite chain of uncertainty relations
for actors in G.

For example, in the picture in figure 26.4, where p holds in the current world (the black
dot), in the black world, (a) agent Q does not know if p is the case: ÿKQp & ÿ KQÿp; (b)
agent A does know that p is the case: KAp; while (c) it is common knowledge in the
group {Q, A} that A knows whether p is the case: C{Q, A} (KAp ⁄ KAÿp). Incidentally, this
might be a good situation for Q to ask A a question about p: but more on epistemic actions
below.

Dynamic logic

Accessibilities can also be viewed as transitions for actions that change states. In
‘dynamic logic’ – originally designed to describe the execution of computer programs,
but now used as a general logic of action, we have

[p]f says that after every successful execution of action p, f holds.

Thus, modal statements relate actions to ‘postconditions’ describing their effects (and
also to ‘preconditions’ for their successful execution). A concrete model of this are
games, where actions are moves available to players. For example in the tree shown in
figure 26.5, player E has a strategy for achieving an outcome satisfying p.

This strategic assertion is captured by the dynamic modal formula [a»b]· c»dÒp.
Again we get a minimal modal logic for universal validity here, this time set up as a
two-level system treating propositions and actions (transition relations) on a par. This
joint set-up allows for a logical analysis of important action constructions, encoded in
valid principles for general operations as well as specific actions:
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[p;p¢]f ´ [p][p¢]f sequential composition
[p»p¢]f ´ [p]f & [p¢]f choice
[(f)?]y ´ (fÆy) test for proposition f

A major new feature here is unbounded finite repetition of actions: p*. This is typical for
computation, and it is not first-order definable. This shows in axioms

[p*]f ´ (f & [p][p*]f) fixed-point axiom
(f & [p*](f Æ [p]f)) Æ [p*]f induction axiom

Thus, dynamic logics resemble infinitary fixed-point extensions of classical logic, but
they do retain the ‘modal stamp’: being bisimulation-invariant, and decidable. Fixed-
point definitions are ubiquitous in computer science, but also in mathematics or lin-
guistics, because many natural notions involve a kind of ‘implicit’ recursion. An elegant
current system of this kind for actions is a generalization of dynamic logic allowing
arbitrary fixed-point definitions: the so-called ‘m-calculus.’

Temporal and spatial logic

A more traditional, but very lively application area of modal logic concerns ‘physical’
rather than ‘human’ nature. We mention this as a counterpoint to our cognitive slant.
One concrete interpretation of modal models is as flows of time, accessibility being
‘earlier than.’ The universal modality will then say ‘everywhere in the future,’ which
comes with an obvious dual ‘everywhere in the past.’ Temporal logics are prominent in
computer science and AI, where they show a great diversity beyond this basic modal
point of departure. In particular, they can live over different primitive entities: 
duration-less points, or extended ‘periods.’ Usually, the vocabulary of temporal lan-
guages is much richer than the basic modal language. A typical example are operators
allowing us a view of what goes on during the successful execution of a program or plan:

UNTIL fy at some point later than now f holds,
while at all intermediate points y is true

In this same physical arena, modal logics of space are also gaining importance, for
example in knowledge representation. One of these revives an old mathematical idea.
Let our models be topological spaces endowed with a valuation. Then the modality
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�f may be read as saying that the current point lies in the topological interior of
the set [[f]] of all points where f holds.

Then, modal laws come to encode various topological facts about space, for example:

�(f&y) ´ �f & �y says that open sets are closed under intersections.

This style of analysis may be extended to modal fragments of geometry. It provides an
alternative to our standard semantics quantifying over successors in some binary
world-to-world relation. (Technically, it is a ‘neighborhood semantics,’ of a sort devel-
oped in the 1960s to explore landscapes below the minimal modal logic K.) Thus our
spatial excursion also shows that the ‘standard approach’ is not sacrosanct.

AI, linguistics, mathematics

Modal logic has either been applied, or rediscovered, in such areas as artificial intelli-
gence (‘description languages,’ ‘context logics’), linguistics (‘categorial grammar,’
‘feature logics’), and indeed mathematics, with flourishing areas such as ‘provability
logic,’ and in recent years also modal versions of set theory. This list is not complete
(intuitionistic logic or relevant logic or linear logic are also similar in some of their key
features), but it does show that modal structures occur naturally across a wide range
of disciplines.

5 Fine-Structure of Expressive Power

Modal logic today shows several new general themes that cut across these various appli-
cations. We mention a few, though there is certainly no consensus on a simple syn-
thesis out of the current research scene. One is extension of expressive power.

Logical extensions

Modal languages can be enriched over their original models. A popular ‘logical exten-
sion’ of this sort adds a universal modality

Uf saying that f is true at all worlds, accessible or not.

This gives more expressive power, which one can use to state ‘global facts,’ such as the
inclusion of one region of the model in another. But our standard techniques general-
ize, for example, the language of {�, U} matches up with ‘total bisimulations,’ whose
domains and ranges are the whole models being compared. And also: its minimal logic
remains decidable – though the complexity of validity goes up to exponential time.
(When added to more complex languages, indeed, U may push a decidable logic over
the brink into undecidability.) In earlier years, extending the basic modal language was
‘not done,’ because it would change the rules of the game, and make life too easy. Here
is another example. Having names for specific worlds would be a great convenience, both
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in practice and in the modal metatheory, but the basic language does not allow it. For
example, much has been made of the latter’s inability to express the frame property of
irreflexivity ("x ÿRxx). But this is expressed quite simply by the following axiom in an
extended modal language:

i Æ ÿ ‡i where the ‘nominal’ i is a special proposition letter ranging over only
singleton sets of worlds.

Nowadays the tendency is to add such devices freely, only subject to striking a good
balance between increased expressive power and manageable complexity. Another
example is the above operator ‘Until’ of temporal logic, where inhibitions as to enrich-
ment have always been weaker. What keeps these extensions ‘modal’ is that they allow
for bisimulation analysis, while staying decidable. Much is known by now about which
added operator leads to which jump in decidable complexity for our benchmark tasks
of satisfiability, model checking, and model comparison.

‘Geometrical’ extensions

By contrast to the preceding move, ‘geometric extensions’ enrich the similarity type of
our models, adding modalities with new accessibilities, as in epistemic or dynamic logic,
or in polyadic modal languages with n-ary alternative relations. For example an exis-
tential ‘dyadic modality’

‡fy holds at s iff t, u s.t. R3s, tu, f holds at t, y holds at u

Concrete interpretations for such ternary accessibility relations R include:

s is the concatenation of two expressions t, u,
s is the merge of the two resources t, u.

Guarded fragment

One limit to which many extensions of both types tend is the so-called Guarded Fragment
of first-order logic. This is defined inside the full first-order syntax by allowing only
quantifications of the ‘guarded’ form

$y(G(x, y) & f(x, y))

where x, y are tuples of variables, G(x, y) is an atomic formula whose variables occur
in any order and multiplicity, and f is a guarded formula having only variables from x,
y free. Many modalities are guarded in this syntactic sense:

‡p $y(Rxy & Py)
‡pq $yz(Rxyz & Py & Qz)

This sublanguage of first-order logic, where groups of objects are only introduced
‘under guards’ still yields to modal analysis supporting a ‘nice’ meta-theory.

$
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THEOREM The Guarded Fragment has a characteristic bisimulation.
THEOREM The Guarded Fragment is decidable in doubly exponential time.

These properties even transfer to certain extensions. Another interesting property
exemplified in this setting is robust decidability: small modal languages sometimes bear
the weight of expressive extensions that otherwise explode reasoning complexity. An
example are fixed-point operators for inductive definitions. On top of first-order logic,
these make the resulting language non-axiomatizable – when added to the Guarded
Fragment, however, they do not increase complexity at all.

Two dimensions

The earlier ‘landscape’ of modal logic was really one-dimensional: it kept the basic 
language constant in expressive power, varying deductive strength of special theories
expressed in it. But now we have a second dimension: systematic variation of expres-
sive power. This new two-dimensional landscape has many ‘thresholds of complexity’
which are currently being charted.

6 System Combination: Action and Information

Other main themes in general modal logic today are many agents, dynamics, and system
combination. The former has already occurred in our survey. As to the latter, many appli-
cations are ‘multi-modal,’ putting together various modal logics in one system: say of
action, knowledge, and time. There are several ways of doing this, ranging from mere
‘juxtaposition’ to more intricate forms of interaction between the component logics.
One then wants to predict expressiveness and complexity of the combination from those
of its parts – plus the mode of combination used. There is an incipient general theory
of relevant modes of combination, including new constructions of ‘product’ and ‘fiber-
ing.’ This style of thinking even shows in modern technical views of modal predicate
logic. One can ‘deconstruct’ this famous system into a combination of two modal logics:
a static one of world accessibility, and a dynamic one of object assignment to variables.
The main challenge arising then are the unpredictable effects of various combinations.
Disregarding further generalities concerning composition of logics, we describe two
rather exciting recent special combinations of long-standing modal ideas.

Information update

Models of epistemic logic serve as information states for groups of agents. Epistemic 
formulas are then evaluated against worlds in such states, telling us what is true or not
in them. But knowledge usually functions in communication: it is conveyed to others 
via speech acts, and influenced by theirs. To model such cognitive actions, we need to
combine two earlier systems: epistemic logic and dynamic logic. In particular, a com-
municative action changes the current epistemic model! In the simplest case, this
‘update’ works as follows:
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public announcement of a proposition f to a group of agents eliminates all worlds in the
current model M that satisfy f

Suppose that in our earlier two-agent two-world picture Q asks A : “p?” and A then
truthfully answers ‘Yes.’ Then the ÿp-world gets eliminated, and we are left with a one-
world model where p has become common knowledge among {Q, A}. But more subtle
cases are possible, even with very simple models of this sort. For example, a question
itself may convey crucial information! Suppose that, by asking, Q conveys the infor-
mation that she does not know the status of p. Even if A did not know the answer at
the start, this may tell him enough to settle p, and thereby answer the question. Figure
26.6 shows one scenario where this happens.

But the modeling power of combined epistemic dynamics is still higher. For example,
suppose neither Q nor A knew about p, but A asks expert R, who answers only to Q.
Then A learns whether p, Q is no wiser about p, but it has become common knowledge
that A knows whether p. This requires ‘arrow elimination’ (figure 26.7).

These simple pictures hide delightful subtleties. For example, one may check that,
on this account, a public announcement that some formula f is the case need not
always result in our ‘learning that f’, in the form of an updated model where f holds!
(For, truth value switches may happen when we process an announcement of igno-
rance.) Precise algorithms for performing updates associated with communicative acts,
public or private, have been proposed in recent years – and these provide an entirely
new use of our ‘standard models.’ Eventually, in this view of communication, one
wants to describe not just information update, but also actions of ‘withdrawal’ or revi-
sion, triggered by propositions that contradict the content of our current information
state. These cognitive actions require modal logics of counterfactual conditionals that feed
into modern belief revision theory.

Game logics

There can be more than one attractive way of putting modal ideas together. Another
interesting mix of ‘epistemics’ and ‘dynamics’ occurs in the analysis of games. As
players move through a game tree, their information changes. Plain game trees are
described in dynamic logic, as we saw in an earlier section, though realistic reasoning
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about future game actions also require a logic of players’ preferences. Especially inter-
esting, however, are imperfect information games, where players may not know the
precise moves played by their opponents. Thus, in these games, the primary epistemic
uncertainty is between actions, and only in a derived sense between the resulting game
states. (Think of a card game where we cannot observe which initial hand Nature is
dealing to our opponent, or where some mid-play moves by our opponents may be par-
tially hidden.) An informative example is the earlier game tree, but now with an uncer-
tainty link for player E at the second stage – she does not know the precise opening move
played by A (figure 26.8).

We can view this as a model for an obvious combined dynamic-epistemic language,
having both epistemic modalities Ki and dynamic ones [a], which may interact. In par-
ticular, half-way, player E knows ‘de dicto’ that she has a winning move

KE(·cÒp ⁄ ·dÒp)

but she does not know any particular winning move ‘de re’:

ÿKE·cÒp & ÿ KE·dÒp!

Indeed, this game is ‘non-determined’ in a natural sense: E cannot force an outcome 
p, but neither can A force outcome ÿp. The general logic of these game trees is the
minimal propositional dynamic logic plus epistemic ‘multi-S5.’ But on top of that, the
combined dynamic-epistemic language can also express modes of playing games. Take
the game-theoretic notion of ‘Perfect Recall.’ This describes players whose own actions
never introduce any uncertainties that they did not have before. Properly understood,
this validates an interchange axiom

(turnE & KE[a]f) Æ [a]KEf:

what we know about the result of our own game moves is still known to us after we
perform them. (To understand this better, contrast the effects of non-‘epistemically
neutral’ actions like drinking genever.) Thus, we can correlate modal logics in this 
epistemic-dynamic language with special styles of playing a game. Another mode is
‘Bounded Memory’ – whose treatment requires a universal modality. This simple
example also illustrates a general point. Games are a nice target for logical analysis
because they show cognition at work under well-defined ‘laboratory circumstances.’

MODAL LOGIC

405

Figure 26.8



7 Back to the Heartland

Modal logic started as an epicycle on standard logic. And it is still viewed by most people
as a ‘nonstandard’ topic beyond The Core. But latterly, it has started to influence the
heartland itself. We conclude with two examples of this 1990s trend.

Modal foundations of predicate logic

Predicate logic itself is a form of modal or dynamic logic! The key truth condition for
the existential quantifier reads

M, s |= $xf iff there exists d in DM s.t. M, s[x:=d] |= f

This has the modal pattern for evaluating an existential modality ·xÒ:

M, s |= $xf iff there exists t s.t. Rxst with M, t |= f

Viewed in this light, the usual set of ‘valid laws’ of first-order logic can be deconstructed
into several layers: (1) Its decidable(!) core is the minimal modal logic, which contains
such laws as Monotonicity: "x(fÆy) Æ ("xf Æ "xy). This level makes no presuppo-
sitions whatsoever concerning the form of the models, which could have any kind of
‘states’ and ‘variable shifts’ Rx. (2) Next, there are laws recording universal effects of
taking variable assignments for states, plus the special shift relation of ‘agreeing up to
the value for x.’ For example "xf Æ "x "xf expresses the transitivity of Rx: indeed, all
of S5 holds. (3) Most ‘specifically’, some first-order laws express existence properties for
states. Here is an example:

$x "yf Æ "y $xf expresses confluence: whenever s Rx t and s Ry u, then there also
exists a state v s.t. t Ry v and u Rx v (figure 26.9).

Thus, modal analysis reveals unexpected ‘fine-structure’ in the class of what is usually
lumped together as ‘standard validities’: they are valid for different reasons!

Moreover, on our general modal models, the predicate-logical language gets in-
creased expressive power, because new distinctions come up. For example:

polyadic quantifiers $xy•
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introducing two objects becomes different from iterations $x $y• or $y $x•.
Summing up, we get a highly unorthodox view. The ‘modal core’ of standard logic is
decidable, pace Church and Tarski – but piling up special (existential) model conditions
makes state sets behave so much like full function spaces DVAR that their total logic
becomes undecidable.

Dynamic predicate logic

Another dynamic view on first-order logic rather emphasizes the state change implicit
in evaluating an existential quantifier. We move to a new state containing a suitable
‘witness value’ for x. More generally, one can let first-order formulas denote actions of
evaluation:

(a) atomic formulas are tests if the current state satisfies the relevant fact,
(b) an existential quantifier picks an object and assigns it to x (random assignment),
(c) a substitution operator [t/x] is a definite assignment x:=t,
(d) a conjunction is sequential action composition,
(e) a negation ÿf is a test for the impossibility of succesfully executing the action f.

The resulting ‘dynamified’ version of first-order logic has applications in the semantics
of natural language – as anaphoric pronouns ‘he,’ ‘she,’ ‘it,’ show this kind of dynamic
behavior. One nice illustration occurs with sentences like

$x Kx Æ Hx ‘if you get a kick, it hurts’

The standard logical folklore must ‘improve’ natural language here to arrive at the uni-
versal first-order form "x (Kx Æ Hx). But with dynamic semantics, this meaning arises
automatically, as any value assigned by the existential move in the antecedent will be
bound to x when the consequent is processed. This system has also inspired program-
ming languages for dynamic execution of specifications.

‘Dynamic predicate logic’ exemplifies a general paradigm of bringing out the implicit
cognitive dynamics which underlies existing logical systems. This allows one to view
natural language meanings in terms of updates of propositional content, perspective,
and other parameters that determine the transfer of information.

8 Conclusion

This survey is different in spirit from standard wisdom in philosophical logic. We have
presented modal logic as a tool for fine-structure analysis of the expressiveness and
complexity of logical languages, including effects of their combinations, and the major
applications (information, action) that drive abstract theory today. There is no uniform
conclusion, or even a new definition of modal logic in the end: the modern field is just
too rich for that. Our purpose with this short article will have been served if the reader
experiences a culture-shock, seeing the differences between reality and the picture still
painted by many ‘standard textbooks.’
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