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Logical Foundations of Set Theory
and Mathematics

M A RY T I L E S

For much of the twentieth century the philosophy of mathematics centered around
studies in the foundations of mathematics and these typically concentrated on set
theory, arithmetic and the theory of real numbers. They also typically involved work in
formal logic. Thus it is natural enough to think that we know what we should be talking
about when given the above title. But do we really? To make sure that we do, we had
better start by considering what it means to talk of foundations in general and logical
foundations in particular, especially in the context of mathematics. We also have to find
out how set theory gets into the act.

1 Foundations and Logical Foundations

I was especially pleased with mathematics because of the certainty and self evidence of its
proofs; but I did not yet see its true usefulness, and thinking that is was good only 
for the mechanical arts, I was astonished that nothing more noble had been built on 
so firm and solid a foundation. On the other hand I compared the ethical writings 
of the ancient pagans to very superb and magnificent palaces built only on mud and 
sand . . . when it came to the other branches of learning, since they took their cardinal
principles from philosophy, I judged that nothing solid could have been built on so inse-
cure a foundation. (Descartes 1960: 7–8)

The metaphor of building a dwelling on new, secure foundations pervades Descartes
two most popular works, Discourse on Method and Meditations, and is one of the 
ways in which he influenced subsequent developments in philosophy. It was only in 
the second half of the twentieth century that this quest for foundations ceased to 
dominate philosophical discourse, although it remains a persistent theme, especially
within the philosophy of mathematics, although even here it is increasingly being 
challenged.

When Descartes talked about foundations his conception of how to find them was
influenced by what he conceived to have been the ancient mathematical method of
analysis. Citing Pappus, he saw the method of analysis as a procedure for working back



to the first principles upon which any putative item of knowledge would be based. The
passage from Pappus in which analysis is described is as follows:

in analysis we assume that which is sought as if it were (already) done, and we inquire
what it is from which this results, and again what is the antecedent cause of the latter and
so on, until, by so retracing our steps we come upon something already known or belong-
ing to the class of first principles, and such a method we call analysis as being a solution
backwards.

But in synthesis, reversing the process, we take as already done that which was last
arrived at in the analysis and, by arranging in their natural order as consequences what
were before antecedents, and successively connecting than one with another, we arrive
finally at the construction which was sought, and this we call synthesis. (Editor’s note in
Euclid 1926: vol. I, pp. 138–9)

It is thus by analysis that we get back to first principles, but they are only shown to be
adequate as first principles if the corresponding synthesis can be completed, that is if
we can show that they provide a basis from which the knowledge to be grounded can
be deduced.

In Descartes’ hands the analysis which provides a grounding for knowledge involves
revealing the complexity of what is to be known by taking it apart into its simpler com-
ponents. This may involve analysis both of objects and of concepts. Indeed terms for
objects will have to be redefined by reference to the way the objects are constructed.
Cartesian foundationalism was inseparable from its mechanistic reductivism. An ade-
quate foundation is then also an ontological foundation; it tells us what our knowledge
is really knowledge about. It is also epistemological in the sense of showing that 
and how our knowledge claims are justified. If in addition one believes that it is 
the ability to provide a justification that constitutes possession of knowledge, then the
analysis–synthesis circuit is also a route to knowledge acquisition and analysis is a
method of discovery, as Descartes himself claimed.

Descartes was not, however, looking for logical foundations. A logical foundation
would be a set of first principles from which one can, using definitions and logically
valid deductive arguments provide proofs for the desired knowledge claims. Descartes
had a low opinion of logic, which in the seventeenth century encompassed little more
than the theory of syllogisms. He wanted his foundations to provide a bedrock on which
to build an edifice of human knowledge. The building would be raised by a process of
deductive synthesis from principles which could ‘clearly and distinctly perceived to be
true’ by a sequence of steps each of which was accompanied by the same sense of self-
evident correctness. These steps are neither confined to the rules of any formal logic
nor would logical validity automatically be sufficient for the kind of support required.
A deduction must reveal what it is in virtue of which the deduced statement is true. 
A logically valid indirect proof using reductio ad absurdum frequently does not do this,
it merely shows why the opposite of what is to be proved cannot be true. Moreover, if
analysis involves the analysis of objects, the reversing synthesis involves the construc-
tion of objects. Knowledge of objects is grounded in their method of construction, a
kind of construction altogether different from the construction of concepts using defi-
nition by genus and differentia (man is a rational animal, for example) which was the
form well-suited to syllogistic reasoning.
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2 Foundations for Mathematics

Why should mathematics be thought to need any foundation? This after all was the dis-
cipline which inspired Descartes, providing him with a paradigm of a structure solidly
erected on firm foundations. The mathematical work central to the formation of this
paradigm was Euclid’s Elements of Geometry. There the foundations, namely, axioms,
postulates and definitions, are laid out at the beginning of each book, and step by step
a body of knowledge is erected through the proof of theorems, later theorems building
on results established earlier. But, as a glance at Descartes’ own treatise on geometry
(Descartes 1925) quickly confirms, the mathematics of the seventeenth century was
already moving well beyond the confines of Euclidean geometry. Newton’s Principia
(Newton 1999), written in 1686, strikingly confirms both the hold of the Euclidean
paradigm as a paradigm for organizing a body of knowledge, and the extent to which
mathematics and its methods have moved away from classical geometry. Newton pro-
ceeds by presenting axioms and definitions. His laws of motion are presented as axioms.
His text consists of propositions proved on their basis but the means of proof introduce
mathematical methods unknown to Euclid. Like Descartes Newton uses algebraic
methods and builds an understanding of ‘complex’ motions on the basis of their com-
position from ‘simpler’ motions. This is what Kant (1996) would later call reasoning
from the construction of concepts, reasoning which he contrasted with logical rea-
soning (reasoning from concepts). Kant saw the distinctive power of mathematics as
deriving from the fact that it employs this form of constructive reasoning, reasoning
grounded in the way its objects are constructed in pure intuition. Reasoning from 
concepts according to the laws of syllogistic logic could establish analytic truths 
(those based on the analysis of concepts), whereas mathematical reasoning from the
construction of concepts establishes synthetic a priori truths.

In addition to using algebraic methods Newton introduced the language of fluxions
in the process of developing the techniques which were to become ‘infinitesimal cal-
culus.’ The soundness of proofs constructed by these means was quickly challenged
(by Berkeley (1992) and others). The methods used seemed to many to be inherently

insecure because they involved trying to treat continuous magnitudes as if they 
could be made up of infinitely many discrete parts. This is spite of the fact that Zeno’s
paradoxes (discussed by Aristotle (1996: 238b23–240b8), and used by him as a basis
for insisting on an absolute distinction between discrete and continuous magnitudes)
and other well-known paradoxes of the infinite suggested that such moves would lead
to inconsistencies and contradictions. The mathematics that, as its use proliferated,
came more and more urgently to seem to be in need of ‘foundations’ – solid construc-
tion on a secure base – was that of analytic geometry and the methods of infinitesimal
calculus.

The challenge that infinitesimals pose to a foundationalism centered on the idea of
knowledge based on methods of construction is that, even supposing there are infini-
tesimally small limits of division (analysis) of a continuous line, the reverse synthetic
process can never be humanly completed – it would be an infinite process. It would seem
to require an infinite mind to understand an infinitely complex whole on the basis of
its parts. Both Kant (1996: 531) and subsequently Cantor (see Dauben 1979: 130–1)

LOGICAL FOUNDATIONS OF SET THEORY

367



firmly declared the idea that analysis should reveal infinite complexity – structure all
the way down – to be absurd. It is absurd to the extent that it violates a core principle
on which the Cartesian foundational program was mounted – understanding is
grounded in methods of construction. If we cannot locate simple parts at the end of a
finite analysis, we humans will never reach a foundation on which to begin building.
The challenge to provide a foundation for the new, infinitistic mathematics, was thus
to find a way round this problem.

3 Mathematics and Set Theory

In Descartes’ geometry, as also in Kant’s treatment of mathematics, the problem noted
above is finessed in the following way for the case of continua. They think of continu-
ous magnitudes as constructed objects by invoking the concept of continuous action
(motion). A line is constructed as the continuous motion of a point, which moves
according to a law given in the form of an algebraic expression. This law expresses a
complex ratio of distances from given, fixed lines (axes) whose value is constantly
expressed by the moving point, and which is thus exhibited by any and every point on
the constructed line. To study a curve through its algebraic characterization is then to
learn about it on the basis of its method of construction, which is not a building up of
discrete parts, but a continuous generation of a continuous whole.

This is a viable position as long as it is possible to think, as had been done since
Aristotle’s discussion of Zeno’s paradoxes, that there are two irreducibly distinct kinds
of whole – continuous and discrete. Europe inherited from the ancient Greeks the view
that mathematics has two distinct branches – geometry, the science of continuous mag-
nitudes, and arithmetic, the science of discrete magnitudes. Discrete magnitudes are
aggregates of parts (elements); they are formed by heaping together a number of dis-
crete items and are thus said to be ‘wholes given after their parts.’ A continuous whole,
on the other hand, can be divided without limit and can be divided anywhere; its parts
are ‘created’ by division which is a process of delimiting the boundaries of a part. Thus
a part here is always essentially a part of the whole from which it is marked off and it
is for this reason that continuous wholes are said to be ‘wholes given before their parts.’
Furthermore, because a continuous whole can be divided without limit, it potentially
contains infinitely many parts. The point of distinguishing firmly between wholes given
before and wholes given after their parts was to underscore the point that one cannot,
on pain of contradiction, think of a continuous whole as something constructed out of
the infinitely many parts it potentially contains; these parts cannot be treated as inde-
pendently given discrete parts to be heaped into an aggregate.

The position taken by Kant and Descartes proved unstable for two reasons. First it
was criticized for relying on the concept of motion, which, being drawn from mechan-
ics, was unsuitable for use in thinking through the foundations of pure mathematics.
Second, because it appears to place restrictions on the possible objects of mathemati-
cal study which mathematicians themselves saw no reason to recognize. It is possible
to write (construct) algebraic expressions which don’t correspond to any continuous
or even drawable curve. What reason could be given for ruling that the complex rela-
tionships expressed in such equations should not be legitimate objects of mathemati-
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cal investigation? In the eighteenth century mathematicians such as Euler and
D’Alembert argued over what was to count as a function. In the end the notion of a
function was liberalized in such a way that any collection of points in the plane could
count as the graph of a function, and any method of calculating a real number as value
for other real numbers as arguments would count as a function.

In many ways this simply reflects recognition that the move of introducing algebraic
methods into geometry, of which Descartes’ work was a part, and the introduction of
Cartesian coordinates presupposes that each point in the Euclidean plane can be
indexed by a pair of numbers, its coordinates. This in turn presupposes that a con-
tinuous line or plane can be represented by a set of numbers, or of pairs of numbers.
Thus one must after all be able to view a continuum as composed of infinitely many
points, in spite of the well-known contradictions arising from the supposition that one
can add dimensionless points, items having length zero, together in such a way that
they make up a continuous line having a positive length. The move thus involves uni-
fication of two opposed ways of thinking about part and wholes and their associated
concepts of magnitude. The challenge was to find a way of doing this while avoiding
the known and very real hazard of ending up with an inconsistent theory. Modern set
theory proposes a solution, but without, as we shall see below, solving all the puzzles.

Mathematicians were thus firmly pushed in the direction of thinking of the
Euclidean plane as an aggregate of points, if not as an aggregate constructed from
points. The direction taken by Hilbert, Cantor and others was not to think about how
to build up a continuum out of points, but to try to state the conditions which would
have to be satisfied by a given collection of infinitely many points for them to count as
constituting the points of a Euclidean plane, or a continuous line. Similarly instead of
thinking about functions by starting from the lines which are their graphs, a (real
valued) function of a single real variable is to be thought of as the set of ordered pairs
which would be the coordinates of the points on its graph. One can then investigate
what characteristics this set must possess if the function is to be continuous at a given
point, differentiable at that point, and so on. Indeed Hilbert (1971) provided a new
axiomatization of geometry along these lines and then proved that the real numbers
could be used to ‘construct’ a structure (model) in which the axioms were satisfied. This
appears to effect a reduction of geometry to the study of sets of points and their pos-
sible structures in conjunction with the study of real numbers.

But what is a real number? How are the real numbers defined? By making use of the
concepts ordered pair, and infinite sequence mathematicians such as Cantor and
Dedekind showed that one could start from the natural numbers – 0,1,2, . . . – to define
the integers (negative and positive whole numbers) as ordered pairs of natural numbers
where, for example, (1,2) represents 1–2, that is -1, and (2,1) represents 2–1, that is
1. Ordered pairs of integers represent the rational numbers, (1,4) is 1/4, etc. Real
numbers can be defined as infinite convergent sequences (Cauchy sequences) of ratio-
nal numbers. (A sequence of rational numbers is convergent if after some point the dif-
ference between successive terms gets smaller and smaller, as in 1, 1/2, 1/4, 1/8, . . .)
In each case it has to be shown that the representatives have all the properties required
of the numbers they are to represent. This is done by providing an axiomatic charac-
terization of the structure required and then showing that these entities and operations
defined over them can be shown to satisfy the axioms.
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These moves have three possible philosophic interpretations. One (the logisist) says
that the definitions show what the different kinds of numbers are and thus we have 
an ontological reduction of integers, rational and real numbers to natural numbers.
Another (the formalist) says that these constructions prove the consistency of the
axioms for integers, rational numbers and real numbers, relative to those for the
natural numbers and whatever is needed for the constructions in terms of ordered pairs
and infinite sequences. A third (the intuitionist) says that because the real numbers 
are defined as infinite, incompletable sequences, our reasoning about them has to
proceed in a different way that our reasoning about the integers or rational numbers,
assertion about real numbers cannot be presumed to obey the law of excluded middle.
Intuitionists and constructivists resist assimilations of mathematical reasoning to
logical reasoning along with any presumption that the infinite can be treated by
analogy with the finite.

If the reduction could continue and the natural numbers could themselves be
defined in terms of sets, then it would seem that one might be able to claim that set
theory provides the ultimate foundation for mathematics. All the objects seem to be
definable as sets and so in principle all theoretical results should be translatable, in prin-
ciple into language which talks only about sets and operations on sets. The Bourbaki
program, carried out by a group of French mathematicians, shows that this really is
possible for large areas of mathematics.

The step that is made in the development of modern set theory, which allows the
above constructions and allows it to accommodate aspects of the theory of both dis-
crete and continuous wholes, wholes given before and whole given after their parts, is
the distinction between set membership and set inclusion. The relationship between a
set and its members, corresponds to that between a discrete whole (aggregate) and its
parts and the relationship between a set and its subsets has to take over the work done
by the relationship between whole given before its parts and those parts.

Sets are assumed to be identical if and only if they have the same members, so in
this sense sets are defined by their members. Moreover, since the subset relationship 
can be defined in terms of the membership relation (A is a subset of B if and only all
members of A are members of B) the barrier between these two ways of thinking about
wholes and parts becomes permeable. In principle all sets are regarded as discrete
wholes, even though some are infinite. However, it is also assumed that a subset of a
given set A can be defined as the set of all elements of A having property P. This way
of defining sets makes them subsets of a given set, that is parts given after the whole. It
is further assumed that for any set A there is a set, the power set of A, containing as its
elements all and only subsets of A. The barrier between the theory of discrete and con-
tinuous wholes, wholes given before, and those given after their parts is transformed
into a double gulf (1) between finite and infinite sets and (2) between an infinite set and
its power set – the set of all its subsets. The power sets of infinite sets are resistant to
being treated as discrete wholes – things to which one might put a number in the same
sense in which one can put a number to a finite set. This resistance is reflected in the
independence of Cantor’s Continuum Hypothesis from the remaining axioms of ZF set
theory. (This hypothesis says that the cardinal number of the set of all subsets of the
natural numbers is the next infinite cardinal number after that of the set of natural
numbers. Cantor had already proved that the cardinal number of the set of real
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numbers is the same as the cardinal number of the set of all subsets of the natural
numbers.)

4 Sets, Classes, and Logic

So how does enquiry into the foundations of mathematics become a quest for logical
foundations? By relating sets to classes and in this way making set constructions the
product of corresponding logical operations for defining predicates. Then the way is
cleared for losing the distinction between the synthesis which is logical deduction from
first principles and the synthesis which is building up from simple component parts,
and hence also the distinction between logical analysis (analysis of concepts) and
analysis of objects. This will work if sets or classes are objects which can be constructed
by logical operations on their corresponding concepts, but would not be possible
without extending logic to cover relations and functions, as well as concepts, and the
various operations used by mathematicians to define these. Accomplishing this task
was Frege’s major achievement.

Frege (1950) aimed to show that arithmetic is a body of analytic truths; that it really
is a part of logic, in his new extended sense of logic. This includes the claims that classes
are logical objects, that numbers are classes and that the application of any arithmeti-
cal truth is a matter of logical deduction. If Frege had succeeded he would thus have
explained the universal applicability of arithmetic at the same time as providing it with
a foundation in logic and the theory of classes.

The notion of set, or class, invoked in an informal way by Cantor and other mathe-
maticians, already had a history in logic and attempts to introduce algebraic methods
into logic, from Leibniz to Venn, De Morgan, and Boole. In traditional logic a class is the
extension of a term – the collection of objects of which that term can be correctly pred-
icated. Classes are thus wholes to which the theory of discrete, rather than continuous
magnitude would apply.

The first thing that Frege needed to do was to introduce into logic a reflection of the
distinction between the membership and subset relations. In Aristotelian logic this was
not marked because singular statements, such as ‘Aristotle was bald’ were, for the pur-
poses of syllogistic logic, treated as universal sentences, that is by analogy with ‘All
Greek males are bald.’ Both of these would have been assigned the form ‘S a P’ and
would then be viewed as expressing either an intensional relation (the predicate P is
included in the concept of the subject S) or an extensional relation (the extension of
the subject term S is included in the extension of the predicate term P). Frege on the
other hand insisted on the distinction between object and concept as a logical distinc-
tion and one that should be reflected in logical notation. Objects have to be reflected at
the logical level if the application of numbers is to be a logical operation, for it is objects
that are counted and it is objects that are formed into sets.

The logic we have inherited from Frege, via Russell and others, thus starts from the
singular sentence, P(a) which corresponds to the set theoretic form ‘a Œ {x : Px}.’ 
The universal then has the form ‘"x(S(x) Œ P(x))’ which in turn can be used to define
the subset relation; A Õ B if and only if "x(x Œ A Æ x Œ B). Frege also argued that set
theory had to be based in logic if it was to hope to account for numbers and our use of
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them. The idea of a set as an aggregate of objects runs into problems trying to account
for the bases of the system of natural numbers – 0 and 1. How can there be a heap con-
taining no objects? Moreover what is the difference between a heap containing a single
object and just a single object. Frege’s insistence that sets should be thought of as
classes, the extensions of concepts, avoids these puzzles. It is easy to define a concept
(‘is a round square’ or ‘x π x’ for example) under which no object can possibly fall, and
which hence has an empty extension. So 0 is the number of the concept ‘x π x.’
Similarly there can be concepts under which only one object falls (‘0 = x,’ for example)
whose extensions contain a single object. So 1 is the number of the concept ‘0 = x.’
Frege thus asserted that a statement in which a number is applied is a statement about
a concept; it says how many things fall under it. But he also insisted that numbers are
themselves objects which can be grouped into classes. He ends up defining numbers as
classes, saying that for any concept F, the number of Fs is the class of classes which are
equinumerous with the class of Fs. So, for example 1 becomes the class of all classes
equinumerous with the class of things identical to 0.

With the numbers so defined Frege shows, using only his logical principles and def-
initions, that they will satisfy the axioms for the natural numbers, given earlier by
Peano. This would justify his claim that the truths of arithmetic are really logical truths,
expressible using only logical concepts such as identity, object, concept, and class
together with logical operations, such as negation, conjunction, and the formation of
universal and existential generalizations (expressed with his newly introduced quanti-
fier/bound variable notation). Unfortunately, as is well-known, Frege’s logic was shown
by Russell to be inconsistent; it permits the existence of the class of all classes which do
not belong to themselves and if this class either belongs or does not belong to itself, a
contradiction results.

Russell’s response (Whitehead and Russell 1910–13) was to place restrictions on the
predicates which could be thought to determine classes. His vicious circle principle,
used in developing the ramified theory of types, bans classes from being defined and
formed by reference to more encompassing classes to which they would belong. So, for
example, no class can be defined by referring to the totality of all classes, since it would
itself belong to that totality. This principle insists that the ‘parts,’ or members, of a dis-
crete whole must be definable independently of that whole. In addition Russell insists
that classes are basically logical fictions, not genuine objects. In other words, statements
about a class should in principle be expressible as statements about the members of that
class. This would not be possible if the vicious circle principle were violated. His image
is then very reductivistically foundational, with a vision of a universe of classes which
can be built up successively from a given stock of individuals, and where the whole
superstructure could in principle be shown to provide only a shorthand for making
complex descriptions of that universe of individuals. This vision had great appeal 
to empiricists since it appeared to obviate the need to postulate the existence of
any abstract objects in order to account for mathematical knowledge and its wide
applicability.

The problem is that, as Russell himself was forced to recognize, this does not yield a
theory of classes which meets mathematicians’ requirements. If we remember that
what mathematicians required was a unification of the theory of wholes given before
their parts with that of wholes given after their parts, we can understand why Russell’s
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complex system, although much richer than anything achievable with traditional logic,
will not serve, for it is constrained to a theory of wholes given after their independently
specifiable parts and replaces set construction by logical construction of their defining
predicates.

In order to have a theory rich enough to develop mathematics Russell had to add
two specific axioms – Infinity, which says that there are infinitely many individuals, and
Reduction, which basically allows the existence of all subclassess of a given class, no
matter how defined, to be collected into a class. Both of these are existence axioms and
cannot easily be claimed to be logical truths. Moreover their use raises once again the
problem of consistency – how could one be sure that tacking these two axioms onto
the system will not render it inconsistent?

An alternative response to the problems with Frege’s logic was to axiomatize the
theory of sets and then think about how to prove the axiomatized theory consistent.
The axiomatization now regarded as standard is based on those of Zermelo and
Fraenkel (hence called ZF). It includes operations for building up sets member by
member, but also for an infinite set and for using predicates to mark off the subsets of
an already given set. The totality of subsets of a given set is asserted to exist without
any restriction which says that these have to be definable as the extensions of predi-
cates. Moreover, in many cases an additional axiom, the Axiom of Choice is added, and
this explicitly asserts the existence of sets as aggregates of objects for which there may
well be no such definition. Gödel (1938) showed that it is possible to provide a model
for the ZF axioms by restricting sets to those which are definable (the constructive uni-
verse). In this universe the axiom of choice and Cantor’s continuum hypothesis would
be true. However he and others have also argued that this universe is too restrictive for
mathematical purposes. Subsequently Cohen (1966) proved that both the axioms of
choice and the continuum hypothesis are independent of the remaining axioms of ZF
set theory. This means that the basic ZF axioms remain neutral on whether set con-
struction is reducible to logical construction, but to the extent that mathematics seems
to require use of the axiom of choice and to presume a universe containing non-
constructible sets, this reductive restriction is rejected.

The resulting relation between logic and set theory is complex. It is certainly not 
a matter of one providing a foundation for the other. ZF set theory is written in the 
language of classical first-order predicate logic and any results proved about theories
written in such a language apply to set theory. Some of those results, however, are
proved using set theory, since the semantic approach to the study of predicate logic,
relies on the concept of a model, and models are defined as structured sets. Results
about models are then proved in set theory. So there is a complex, symbiotic relation
between axiomatic set theory and predicate logic.

Hilbert’s (formalist) program was to develop finitary methods for theorizing about
formally expressed axiomatic theories with the aim of proving whether or not they are
consistent. The idea was that if it could be proved using only finitary methods that 
a theory of infinite sets was consistent (that no formal contradiction could be proved
from the axioms) then it would be safe to use. Again this is a way of seeking to use a
constructive base to legitimize something which goes beyond it.

Gödel (1962) contains his famous incompleteness results. His first incompleteness
theorem showed that any consistent formal system capable of expressing arithmetic
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would contain undecidable arithmetic sentences. On the assumption that any state-
ment about numbers is either true or false, this would imply that there would always
be some arithmetic truth that could not be proved in the particular formal system in
question. This creates a problem for the logicist who wants to say that every arithmetic
truth is a logical truth. It either has to be allowed that no formal system captures the
notion of logical truth, or that the logicist claim is false, or that not every statement
about numbers is determinately true of false. His second incompleteness result shows
that the consistency of such a system cannot be proved by means formalizable within
the system, which demonstrates that Hilbert’s program for providing an ultimate con-
sistency proof for infinitary methods by finitary means cannot be realized.

Where did this leave foundational programs? Although Gödel’s results undercut the
philosophical rationale for both logicist and formalist programs, foundational studies
had taken on a life of their own. New branches of mathematics, and new ways of study-
ing logics had been developed. There were plenty of things to be discovered about these
new domains and work in all these areas for a while continued to fall under the title
studies in the foundations of mathematics. Philosophers too needed to learn from the
technical results to try to decipher their philosophical significance. The idea that math-
ematics has a foundation in logic could still be pursued by debating the boundaries of
logic and the way in which a reduction to logic might be effected. However, that par-
ticular convergence of mathematics, set theory and logic required to reduce the con-
struction of mathematical objects to logical construction (definition of predicates),
which was central to the plausibility of the claim that mathematics could be provided
with a foundation in logic, proved to be relatively short lived. By the late twentieth
century logic, set theory and mathematics were developing on independent tracks,
interacting in complex ways, but none serving as a bedrock on which to raise the
others.

The weaker claim that any branch of mathematics can be given a logical founda-
tion, by being written as an axiomatized theory in the language of first order logic, leads
to a different way of saying that all mathematical truths are logical truths. One can
then say that what mathematicians prove are logical truths of the form ‘If P then A,’
where P is some finite conjunction of axioms. If the axioms are inconsistent, all such
statements are still be logical truths, given the materiality of the conditional in classi-
cal first-order logic. Unfortunately this gives a much too simplistic picture of mathe-
matical practice. Take for example, Wyle’s proof of Fermat’s last theorem. This appeals
to results in many branches of mathematics other than arithmetic. To even begin to
represent his proof as establishing a logical connection one would include the axiom-
atizations of all these other bits of mathematics, and give a logical representation of the
process of applying the results from one mathematical domain in another. Thanks to
the work of the Bourbaki group in showing how to do mathematics within the frame-
work of set theory, one might say that in principle this could be done within set theory;
but others would question whether such a thing (a full formal proof) would be able to
serve the functions of a proof – convincing people by helping them understand why
the conclusion is true.

The focus of foundational studies was set in the nineteenth century at a time when
it seemed that numbers of various kinds were the fundamental objects of mathemati-
cal investigation. In the twentieth century mathematics seemed to be equally concerned
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with the investigation of structures and procedures. Structures can be characterized
without saying how they can be built from objects. They can be characterized on the
basis of the kinds of transformations under which they are preserved. This idea gave
rise to a rival foundational bid from category theory, where objects are complex wholes
given before their parts and internal structure is revealed through a study of the way
they relate to other objects of their kind (category) through structure preserving 
mappings (morphisms).

The study of finitary procedures led to the theory of recursive and computable func-
tions and to the developments of electronic computers. The extensive use and deploy-
ment of these computers has in turn been instrumental in undermining some of the
presumptions which made foundational programs seem plausible. In particular devel-
opment of the study of fractals, and complex systems, coupled with earlier results in
nonstandard analysis, show that there is no more risk of contradiction associated with
infinitesimals and the idea of structure all the way down, than with infinitely large sets.

Attempts to make computers into expert systems have stimulated the study of alter-
native logics, some of which (particularly non-monotonic and fuzzy logics) depart 
radically from the systems developed by Frege and Russell. In addition uses such as 
computer modeling have meant that there is continued interest in mathematics devel-
oped by constructivists, those who resisted both the move to reduce mathematics to
logic and the use of infinitistic methods. Since computer memories are decidedly finite,
computer representations of the continuous have to be based on finitary, approxima-
tive methods.

So we are once again in a context where it is not at all clear what a logical founda-
tion for mathematics would look like, nor is it clear that logic is the place to look for
foundations or even that foundations are what we need to be looking for.
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