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Logic in Finite Structures: Definability,
Complexity, and Randomness

S C O T T W E I N S T E I N

1 Validity in the Finite

Is it simpler to reason about finite structures or about arbitrary structures? Some of the
major results of logic in the twentieth century provide a clear and surprising answer
to one precise version of this question. Suppose first that we restrict our reasonings 
to propositions which are expressible in first-order logic. We may then understand the
question as asking for a comparison between the complexity of

1. determining whether a first order sentence is valid, that is, true under every inter-
pretation whatsoever, and

2. determining whether a first-order sentence is valid in the finite, that is, true under
every interpretation with a finite universe of discourse.

This question can be formulated more concisely and concretely in terms of Val, the set
of valid sentences of L, the first order language with identity and a single binary rela-
tion symbol E, and Fval, the set of sentences of L which are valid in the finite, namely:
is the decision problem for Fval simpler than the decision problem for Val?

Let’s begin by analyzing the complexity of the decision problem for Fval. It is easy to
see that we can make an effective list A1, A2, . . . of finite structures for L which con-
tains every such structure up to isomorphism. We may now subject a sentence j Œ L
to the following effective procedure: successively test whether A1 satisfies j, A2 satisfies
j, . . . ; at the first stage where the outcome is negative, halt the procedure and return
the answer ‘no.’ Clearly, this procedure yields the correct answer to the query ‘is j valid
in the finite,’ if the answer is negative, and yields no answer, otherwise. That is, the
complement of Fval is recursively enumerable, or in other words, Fval is co-r.e.

If we attempt such a direct approach to analyzing the complexity of Val, we are
stymied at the outset. There is no possibility of effectively generating a list of all struc-
tures up to isomorphism, since there are structures of every infinite cardinality; more-
over, there is, in general, no effective way to test whether a given infinite structure 
A satisfies a sentence j Œ L. Reflection on the apparent complexity of the notion of
validity provides the proper context in which to appreciate the extraordinary depth of
Gödel’s Completeness Theorem for first-order logic: there is a sound and complete 



effective proof procedure for first-order validity. In other words, Val is recursively enu-
merable – in order to discover that a first-order sentence is valid, if it is, we need only
look through an effectively generated list of finite objects and check that one is its proof.

So far so good: Val is r.e.; Fval is co-r.e. To complete the picture we need to invoke two
more fundamental results of twentieth-century logic. Church’s Theorem tells us that
Val is undecidable, from which it follows that Val is not co-r.e. On the other hand,
Trakhtenbrot’s Theorem (see Trakhtenbrot 1950) tells us that Fval is undecidable, from
which it follows that Fval is not r.e., that is, there is no sound and complete proof pro-
cedure for the first-order sentences which are valid in the finite. This suggests one
answer to the question with which we began: reasoning about finite structures is no
simpler than reasoning about arbitrary structures – there is an effective proof proce-
dure for validity, but no effective proof procedure for validity in the finite. Indeed, there
is a good sense in which we can say that the complexity of the decision problems for
Val and Fval are identical, namely, Val and Fval are Turing reducible to one another. That
is, there is a Turing machine which will decide membership in Val given an oracle for
Fval and there is a Turing machine which will decide membership in Fval given an oracle
for Val. Remarkably, Val and Fval turn out to have effectively the same information
content.

2 Model Theory in the Finite?

The last section suggests that, in a sense, there can be no proof theory for first-order
logic in the finite, since there can be no effective proof procedure for validity in the finite.
How about model theory? At the outset, there are disappointments. One of the central
results in the model theory of first-order logic, the Compactness Theorem, does not
extend to the finite case. Recall the Compactness Theorem: if every finite subset of a set
of first order sentences G is satisfiable, then G itself is satisfiable. Call a set of sentences
G satisfiable in the finite, if and only if, there is a finite structure A which satisfies every
sentence in G. It is easy to construct a set of first order sentences G such that every finite
subset of G is satisfiable in the finite, whereas G itself is not satisfiable in the finite. For
example, let G = {ln Ô n > 0}, where ln is a first order sentence in the pure language of
identity which is true in a structure A, if and only if, the size of A is at least n. Virtually
all the finite analogs of well-known consequences of the Compactness Theorem fail 
as well, for example, the Beth Definability Theorem, the Craig Interpolation Theorem,
most all ‘preservation theorems,’ etc. (See Gurevich (1984) for a compendium of such
results; a notable exception is van Benthem’s preservation theorem for the modal 
fragment of first-order logic, see Rosen (1997).)

Further contrasts between the finite model theory of first order logic and classical
model theory abound. A central phenomenon of first order model theory is that no infi-
nite structure can be characterized up to isomorphism by a set of first order sentences.
Recall that structures A and B are elementarily equivalent, if and only if, they satisfy
the same first-order sentences. It is a corollary of the Compactness Theorem that for
every infinite structure A, there is a structure B (indeed, a proper class of pairwise non-
isomorphic structures B) such that A is elementarily equivalent to B, but A is not iso-
morphic to B. In contrast, it is easy to show that for all structures A and B, if A is finite
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and B is elementarily equivalent to A, then B is isomorphic to A. Indeed, for every finite
structure A whose signature is finite, there is a single first-order sentence j such that
for every structure B, B satisfies j, if and only if, B is isomorphic to A.

3 Definability and Complexity

In light of all these contrasts, one might legitimately wonder what finite model theory
could be. The following sections attempt to answer this question by giving a feeling for
some of the techniques, results, and open problems of the subject. For the most part,
we will pursue questions in definability theory, that is, we will inquire into the expres-
sive power of various logical languages in the context of finite structures. We will see
that this study has close connections with the theory of computational complexity.

We collect together here some notions and notations that will ease our progress. 
A structure A, for us, consists of a universe of discourse ÔAÔ and interpretations for a
finite set of relation symbols and constant symbols; this set of symbols is called the sig-
nature of A. Whenever we mention two structures in the same breath, they are of the
same signature; whenever we speak of a collection of structures, they are of the same
signature. Let K be a class of structures. A collection of structures Q Õ K is a query rel-
ative to K, if and only if, Q is isomorphism closed in K, that is,

"A,B Œ K((A Œ Q Ÿ A � B) Æ B Œ Q).

We will drop the qualification ‘relative to K ’ when the background class is clear from
the context. Queries are the proper object of study in our investigation of definabil-
ity and complexity, since logical languages do not distinguish between isomorphic
structures.

We think of a logical language L as consisting of a set of sentences SL and a satis-
faction relation |=L. We will suppress the subscript to |= as it will generally be clear from
the context. Given a class of structures K and a sentence j Œ SL, we write j(K) for the
query defined by j relative to K, that is,

j(K) = {A Œ K Ô A |= j}.

We write L(K) for {j(K) Ô j Œ SL}, the set of queries which are L-definable relative 
to K.

In what follows, we will analyze and compare the logical and computational com-
plexity of queries relative to classes of finite structures. It will be convenient to intro-
duce, for each signature s, a canonical countable set of finite structures Fs which
contains, up to isomorphism, every finite structure of signature s. We let Fs be the set
of structures of signature s with universe of discourse [n](= {1, . . . , n}) for some n ≥
1. Unless otherwise indicated, all collections of finite structures we mention are under-
stood to be subsets of Fs for some s. We write D for F{E} where E is a binary relation
symbol; D is, for us, the class of finite directed graphs. For simplicity and concreteness,
our discussion will often focus on queries relative to D.
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In the following sections, we will address questions concerning the logical resources
that are required to define a given query Q Õ D. For example, we will consider whether
Q is definable in second-order, but not in first-order, logic; or whether Q is definable by
an existential second-order sentence, but not by the negation of such a sentence, etc.
We can think of this study as yielding information about the complexity of Q – for
example, if Q is not first-order definable, while Q¢ is, we might want to say that the 
definitional, or descriptive, complexity of Q¢ is no greater than that of Q. In this way,
we can think of the classes of queries L(D), for various languages L, as descriptive com-
plexity classes, in analogy with the resource complexity classes studied in the theory of
computation (see Papadimitriou (1994) for background on the theory of computa-
tional complexity). Let us pursue this analogy.

Consider a query Q Õ D. We have been thinking of Q under the guise of definabil-
ity. We can, on the other hand, think of Q as a decision problem: given an A Œ D answer
the question whether or not A is a member of Q. Rather than asking what logical
resources are required to specify Q, we can ask instead, what computational resources
are required to decide membership in Q. To make this precise, we can easily encode each
A Œ D as a bit string, thereby making it a suitable input to a Turing machine. If A is of
size n, the adjacency matrix of A is the n ¥ n matrix whose i, j-entry is a 1, if ·i, jÒ Œ EA,
and is a 0, otherwise. We encode A as the bit string c(A) which consists of the con-
catenation of the rows of the adjacency matrix of A, and for Q Õ D, we let c(Q) = {c(A)
Ô A Õ Q}. If Y is a resource complexity class, then we write Y(D) for the collection of
queries Q Õ D such that c(Q) Œ Y. (In a similar fashion, we may define Y(Fs) for any
signature s.) We are now in a position to make direct comparisons between resource
and descriptive complexity classes. In the following sections, we will see that many
important resource complexity classes, for example, P and NP, have natural logical
characterizations relative to various sets of finite structures.

4 First-Order Definability

One of the main tools for establishing limits on the expressive power of first-order logic
over arbitrary structures is the Compactness Theorem. As noted earlier, we are deprived
of the use of this tool in the context of finite structures, so we will need to rely on other
techniques. We begin with an exemplary application of the Compactness Theorem, so
we can appreciate what we are missing; the example will reappear throughout the fol-
lowing sections.

Let D* be the collection of arbitrary structures A of signature {E}; each A Œ D* is
a, perhaps infinite, directed graph. We call such a graph A simple, if and only if, EA is
irreflexive and symmetric, and we let G* be the collection of arbitrary simple graphs. A
simple graph may be visualized as a loop-free, undirected graph. Note that G* is first-
order definable relative to D*. Now let D*st (resp., G*st) be the collection of expansions 
of structures in D* (resp., G*) to the signature with two additional constant symbols s
and t – this is the collection of directed (resp., simple) source–target graphs. A graph 
A Œ D*st is reachable, if and only if, there is a path from sA to tA in A, that is, sequence 
a1, . . . , an of nodes of A such that a1 = sA, an = tA, and for every 1 £ i < n, ·ai, ai+1Ò Œ EA.
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Let S* be the collection of A Œ G*st such that A is reachable. Is S* first order definable rel-
ative to G*st? An application of the Compactness Theorem provides a negative answer.
For suppose that there is a first-order sentence j with j(G*st) = S*. Let G be the set con-
sisting of the following sentences:

y0 ÿs = t

y1 ÿEst

y2 ÿ$x(Esx Ÿ Ext)

� �

Notice that a graph A satisfies the conjunction y0 Ÿ . . . Ÿ yn, if and only if, there is no
path in A of length £n from sA to tA. Therefore, the simple chain of length n + 1 with
end nodes labeled s and t satisfies y0 Ÿ . . . Ÿ yn, from which it follows that every finite
subset of G » {j} is satisfiable. Therefore, by the Compactness Theorem, G » {j} is 
satisfiable. On the other hand, it is clear that if a graph A satisfies G, then A is not 
reachable. But, this contradicts the hypothesis that j defines S*.

Now, let S � S* be the set of finite reachable simple source–target graphs. The ques-
tion whether S is first-order definable is no longer immediately accessible to an applica-
tion of the Compactness Theorem of the sort sketched above. The Compactness Theorem
can be pressed into service to answer the question by exploiting ‘pseudofinite’ structures,
that is, infinite structures which satisfy every first-order sentence which is valid in the
finite (see Gaifman and Vardi (1985) for details); but, we will follow a different approach,
due to Gurevich (1984), which proceeds via Ehrenfeucht games and yields additional
information. The approach involves a reduction from a query on linear orders.

Let Lst Õ F{<,s,t} be the set of finite linear orders with minimal element s and maximal
element t. The conjunction of the following first-order conditions defines Lst.

"xÿ(x < x) (irreflexive)

"x"y"z((x < y Ÿ y < z) Æ x < z) (transitive)

"x"y(x < y ⁄ y < x ⁄ x = y) (total)

"x(ÿ(x < s) Ÿ ÿ (t < x)) (endpoints)

Let M Õ Lst be the set of odd linear orders, that is, linear orders with universe [2n + 1],
for some n. Is M first-order definable relative to Lst?

Here is one strategy for attempting to show that M is not first-order definable. For
each first-order sentence j, show that there are A, B Œ Lst such that A and B agree
about j (either they both satisfy j or they both fail to do so), A Œ M, and B œ M. It is
clear that if we succeed in doing this, we have shown that M is not first-order defin-
able. (Indeed, the converse holds as well – the strategy is nothing more than a restate-
ment of what’s required.) What makes the strategy worth pursuing is that there is a
powerful, and entertaining, technique, the Ehrenfeucht game, for showing that pairs
of structures agree about first-order sentences. This technique applies to both finite and
infinite structures and, to some extent, fills the void left by the failure of compactness
in finite model theory.
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The Ehrenfeucht game is played between two players, conventionally called the
Spoiler and the Duplicator. The equipment for the game consists of two boards, one rep-
resenting the graph A and the other representing the graph B, and an unlimited supply
of pairs of pebbles ·a1, b1Ò, ·a2, b2Ò, . . . . The game is played through a sequence of
rounds as follows. At the ith round of the game, the Spoiler chooses one of the pebbles
from the pair ·ai, biÒ and places it on a node of the corresponding board A or B, the a
pebbles are played onto A and the b pebbles onto B. The Duplicator then places the
remaining pebble on the other board, completing the round of play. Suppose the game
has proceeded through n-rounds of play. Let ai be the node in A covered by ai and let bi

be the node in B covered by bi. Let f be the mapping which sends ai to bi for all 1 £ i £ n
and sends sA to sB and tA to tB. If f is a partial isomorphism from A to B (that is, a one
to one, edge preserving map) we say the Duplicator wins the game through n-rounds
of play. Thus, the Spoiler’s goal is to reveal structural distinctions between A and B, the
Duplicator’s goal is to hide them. We say that A is n-similar to B, if and only if, the
Duplicator has a strategy to win every play of the Ehrenfeucht game on A and B
through n-rounds. We say structures A and B are n-equivalent, if and only if, A and B
satisfy exactly the same first-order sentences of quantifier rank £n (recall that the quan-
tifier rank of a formula is the maximum depth of nesting of quantifiers in the formula).
The Ehrenfeucht–Fraïssé Theorem tells us that n-similarity and n-equivalence coincide,
that is, for all structures A and B and for every n, A is n-similar to B, if and only if, A is
n-equivalent to B (see Ehrenfeucht 1961; and Fraïssé 1954).

Armed with the Ehrenfeucht–Fraïssé Theorem, we can now implement our strategy
for showing that M is not first order definable. For each n, it suffices to construct a pair
of finite linear orders A and B such that A Œ M, B œ M, and A is n-similar to B. We
accomplish this by overkill – for each n, if A and B are finite linear orders of length >2n,
then A is n-similar to B. To see this, consider the following strategy for the Duplicator
in the n-round game played on two such linear orders. At round m, the Duplicator plays
as follows. Suppose, without loss of generality, that the Spoiler has played into A. This
play falls into one of m intervals into which A has been divided by the play of pebbles
at earlier rounds of the game and it determines distances d1 and d2 between the newly
pebbled point and the left and right endpoints of that interval, respectively. The
Duplicator plays into the corresponding interval in B so as to achieve the following
approximation between these distances and the corresponding distances d ¢1 and d ¢2
between the point he/she pebbles and the endpoints of his/her interval. Namely, for i =
1, 2 if di £ 2(n-m), then di = d ¢i, and if di > 2n-m, then d¢i > 2n-m. The initial condition on the
lengths of A and B insures that the Duplicator can maintain these approximations
through n-rounds of play. Thus, M is not first-order definable. Indeed, any first-order
definable collection of finite linear orders is a finite or cofinite subset of Lst.

Now, we reduce the problem of defining odd length linear orders (M) to the problem
of defining reachability (S ). Let r(x, y) be a first-order formula which is true of a pair
of elements of a linear order, if and only if, the second is the successor of the succes-
sor of the first, and let c(x, y) be the formula r(x, y) ⁄ r(y, x). Suppose A Œ Lst. We 
may use the formula c to define a simple source–target graph B from A. We let ÔBÔ =
ÔAÔ, sB = sA, tB = tA, and EB = {·u, vÒ Ô A |= c[u, v]}. Now, observe that the graph B thus
defined is reachable, if and only if, A Œ M. Suppose that there is a first-order sentence
q which defines S. Let q¢ be the result of replacing each subformula of the form Exy in
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q with c(x, y). Then, q¢ defines M. We have exhibited a ‘first-order reduction’ of M to
S; it follows at once that S is not first-order definable, since M is not. Such first-order
reductions are an important descriptive analog of the resource bounded reductions of
computational complexity theory.

The foregoing examples show that some simple properties of finite graphs are not
first-order definable. These examples can be easily multiplied – acyclicity, regularity, 2-
colorability, etc. all fail to be first-order definable. Lest the reader be left with the impres-
sion that no interesting classes of finite graphs are first-order definable, note that the
collection FR of finite nonempty ranks of the cumulative hierarchy of sets equipped
with the membership relation as their edge relation is first-order definable (see Dawar
et al. 1998). In Section 6, we will see that questions concerning the expressive power
of first-order logic relative to FR are directly related to open problems in the theory of
computational complexity.

5 Second-Order Definability

What logical resources are required to define reachability over finite graphs? As we’ve
just seen, first-order logic doesn’t suffice. There are several routes to the definability of
reachability. Let’s begin with Frege’s (1884). The transitive closure (sometimes called
the ancestral) of a binary relation R is the smallest relation (in the sense of inclusion)
which is transitive and includes R. For example, the relation ‘ancestor of ’ is the transi-
tive closure of the relation ‘parent of.’ If R is a binary relation, we write tc(R) for the
transitive closure of R.

Frege observed that the relational operator tc is uniformly definable by a formula 
t(x, y) of second-order logic; that is, for every structure A Œ D*, tc(EA) = {·u, vÒ Ô A |=
t[u, v]}. The formula t(x, y) may be chosen to be:

"P(("z(Exz Æ Pz) Ÿ "v"w((Pv Ÿ Evw) Æ Pw)) Æ Py).

This formula has a couple of noteworthy features. First, it is a universal second-order
formula, that is, it is of the form

"P1 . . . "Pnq

with q first order. Second, it is monadic universal, that is, each of the universal quan-
tifiers binds a monadic second-order variable. We call the fragment of second-order
logic consisting of all such formulas mon-P1

1. Now, let R* Õ D*st be the collection of
reachable directed source–target graphs. It is clear that t(s, t) defines R* relative to D*st;
directed reachability is mon-P1

1 definable.
Is R* also definable by a monadic existential second-order sentence? Since the full

existential fragment of second-order logic is compact, the argument we gave at the
beginning of Section 3 to show that S* is not first-order definable, also shows that S*
(and hence R* as well) is not definable by an existential second-order sentence, monadic
or otherwise. In the finite case, the situation is subtler. Paris Kanellakis observed (see
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Immerman 1999) that S is definable by a monadic existential second-order sentence
$Pq, where q is the conjunction of the following first order conditions.

Ps Ÿ $!x(Px Ÿ Esx) (s has degree 1 in P)

Pt Ÿ $!x(Px Ÿ Etx) (t has degree 1 in P)

"x((Px Ÿ x π s Ÿ x π t) Æ $y$z(Py Ÿ Pz Ÿ y π z Ÿ "w(Pw Æ
(Exw ´ (w = y ⁄ w = z))))) (all other nodes have degree 2 in P)

If a finite simple graph A satisfies q with respect to an assignment of a set of nodes X
to P, then the nodes in X form a simple chain with end nodes sA and tA. (The reader
should construct an infinite simple graph which is not reachable, but satisfies $Pq.)

Let R � R* be the collection of finite reachable source–target graphs; this class
differs from S in omitting the requirement of simplicity. Ajtai and Fagin (1990) estab-
lished that R is not definable by a monadic existential second-order sentence. Their
argument blends an extension of the Ehrenfeucht game to monadic existential second-
order logic with probabilistic techniques (see Section 8 for a discussion of such tech-
niques). This result establishes a difference in the descriptive complexity of S and R, the
former is definable in both mon-P1

1 and mon-S1
1 (the monadic existential fragment of

second-order logic), the latter only in mon-P1
1. From an intuitive point of view, the

problem of determining whether a finite directed graph is reachable is more complex
than the same problem restricted to simple graphs. It appears that descriptive com-
plexity provides a more convincing account of this intuitive distinction than analysis
of the computational complexity of these problems has yet been able to offer (see Ajtai
and Fagin (1990) for further discussion).

The foregoing considerations leave open the question whether R is definable by an
existential second-order sentence not subject to the monadic restriction. Rather than
exhibiting such a sentence directly, which is straightforward, we will see that a positive
answer to this question is a corollary of a celebrated result of Fagin (1974), namely:
for all s, NP(Fs) = S1

1(Fs) (S1
1 is the set of existential second-order sentences). Fagin’s

Theorem has been dubbed the first theorem of descriptive complexity theory. It equates
the important computational complexity class of queries whose decision problems are
solvable by nondeterministic Turing machines in polynomial time with the descriptive
complexity class of queries which are definable by existential second-order sentences.
Fagin’s Theorem provides a machine independent characterization of NP – in order to
verify that a query is in NP, one needn’t tinker with machines and time bounds, just
produce a S1

1 sentence which defines it. In a sense, Fagin’s Theorem shows that exis-
tential second-order logic is an alternative, what might be called, ‘higher-level,’ pro-
gramming language for specifying exactly the NP queries: the proof of the theorem
yields an effective procedure F for ‘compiling’ an arbitrary existential second-order 
sentence j into a polynomially clocked nondeterministic Turing machine F(j) 
which accepts the query defined by j and establishes that every query in NP is accepted
by one of the machines F(j). Thus, existential second-order logic yields an effective 
enumeration of the NP queries, with the relation of satisfaction as the enumerating
relation.
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To return to our story of reachability, R is in NP – indeed it is in NL, the class of prob-
lems solvable by nondeterministic Turing machines using only logarithmic work space,
and this class is included in P the class of problems solvable by deterministic Turing
machines in polynomial time. It is generally believed that both the inclusions NL Õ P
and P Õ NP are strict, but three decades of intense investigation have failed to produce
a proof for the strictness of either. Fagin’s Theorem opened up the possibility of attack-
ing such outstanding problems in the theory of computational complexity by means of
logical techniques. For example, in order to show that P π NP, it would suffice to show
that there is a query Q such that Q œ S1

1(D) and Q Œ P1
1(D), for, by Fagin’s Theorem,

this would establish that NP is not closed under complementation. The results men-
tioned earlier on the monadic fragments of P1

1 and S1
1 are of some interest in this con-

nection. We saw that R Œ mon-P1
1(D) whereas R œ mon-S1

1(D). This does not resolve
any outstanding problem concerning computational complexity since mon-S1

1 does not
correspond to any natural level of computational complexity. On the one hand, as we’ve
just noted, R is in NL but not in mon-S1

1. On the other hand, mon-S1
1 contains NP-

complete problems, that is, problems which are of maximal complexity among prob-
lems in NP with respect to polynomial time reduction. For example, the NP-complete
query graph 3-colorability is easily seen to be in mon-S1

1. Thus, though the result of
Ajtai and Fagin (1990) does not lead to a separation of computational complexity
classes, it does indicate how logic can contribute to a richer understanding of com-
plexity by focusing attention on complexity classes which are orthogonal to the stan-
dard computational complexity measures, yet natural from a descriptive point of view.

6 Inductive Definability

In this section, we will pursue a more constructive approach to the definability of the
set of reachable graphs. We will see that there are interesting connections between con-
structivity and complexity in this context.

One of the outstanding open problems of descriptive complexity theory concerns the
existence of logics which characterize computational complexity classes below NP. An
important result, due independently to Immerman (1986) and Vardi (1982), is that P
is characterized by FO + LFP relative to ordered finite structures. FO + LFP is the exten-
sion of first-order logic by a least fixed point operator for defining relations by induc-
tion. Least fixed point operators have played a major role in studies of definability on
fixed infinite structures (see Moshovakis 1974). Let j(R, x1, . . . , xk) be a first-order
formula with a distinguished k-ary relation symbol R. On a structure, A, we can use j
to define the relational operator, FA(X) = {·a1, . . . akÒ ÔA |= j[X, a1, . . . , ak]} (here, X is
a k-ary relation on A and the notation stands for the assignment of X to R). If j is an
R-positive formula, FA is monotone in the sense that for all X Õ Y Õ ÔAÔk, FA(X) Õ FA(Y).
We may view j as determining an induction on A the stages of which are defined as
follows: j0

A = 0/; jA
m+1 = FA(jm

A ). Since FA is monotone and A is finite, it follows immedi-
ately that for some m, jm

A = jA
m+1. The least such m is called the closure ordinal of j on A

and is denoted ÔÔjÔÔA. It is easy to see that ÔÔjÔÔA £ lk, for a finite structure A of size l (in
the case of an infinite structure A, the closure ordinal of an induction may be a trans-
finite ordinal a whose cardinality is equal to the cardinality of ÔAÔ). Moreover, one can
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readily verify that for m = ÔÔjÔÔA, jm
A is the least fixed point (lfp) of the relational opera-

tor FA, that is, FA(jm
A ) = jm

A and for all X Õ ÔAÔk, if FA(X) = X, then jm
A Õ X. We use j•

A,
to denote the least fixed point of the operator FA. For example, if c(R, x, y) is the formula

Exy ⁄ $z(Exz Ÿ Rzy)

then for every structure A Œ D, c•
A is the transitive closure of EA. We write FO + LFP for

the extension of first-order logic with the lfp operation which uniformly determines 
the least fixed point of an R-positive formula. That is, for any R-positive formula j, 
lfp(R, x1, . . . , xk)j is a formula of FO + LFP and A |= lfp(R, x1, . . . , xk)j[ā] if and only if,
ā Œ j•

A.
Let us attend once again to reachability. For c(R, x, y) as above, the sentence lfp(R,

x, y)c(s, t) defines R relative to D. This approach to the definability of R has been
regarded as more constructive than the Fregean approach described in the preceding
section: many find the general notion of iteration to be more transparent than univer-
sal second-order quantification. Since, as we will see in the next section, FO + LFP (D)
is properly included in P(D), the ‘more constructive’ approach actually yields a stronger
bound on the descriptive complexity of R . It is interesting to observe, as a corollary of
Fagin’s Theorem and the Immerman–Vardi Theorem, that in the case of finite ordered
structures, the relative power of first-order positive induction versus universal second-
order quantification amounts exactly to the question whether P = NP.

Let us look a bit more carefully at the case of ordered structures. For simplicity, let’s
focus on the set O Õ F{E,<} of ordered graphs – a structure A is a member of O, if and
only if, the reduct of A to {E} is in D and the reduct of A to {<} is in L, the set of finite
linear orders. The Immerman–Vardi Theorem tells us that FO + LFP(O) = P(O). It 
follows from the results of Section 4 that the set of ordered graphs of odd size, a query
in P(O), is not first-order definable relative to O. We may conclude that that FO(O) is
properly included in FO + LFP(O). In fact, there is no known example of an infinite
query Q Õ O such that FO(Q) = FO + LFP(Q). Kolaitis and Vardi (1992a) conjectured
that for every infinite query Q Õ O, FO(Q) is properly included in FO + LFP(Q). This
Ordered Conjecture is an important open problem in finite model theory which turns
out to have connections to a number of open problems in the theory of computational
complexity. Even the special case of this conjecture concerning the power of first-order
versus fixed point definability relative to the set FR of finite ranks of the cumulative
hierarchy of sets is open, and its resolution would have significant complexity theoretic
consequences (see Dawar et al. 1996; Gurevich et al. 1994). (This counts as a special
case, since a linear order is uniformly first-order definable on the structures in FR, see
Dawar et al. (1998).)

The Ordered Conjecture asks whether there is an infinite set of finite ordered struc-
tures relative to which first-order logic characterizes polynomial time computability. If
we turn our attention away from ordered structures, we can formulate what has been
regarded as the central open problem of descriptive complexity theory, namely: Is there
a logical characterization of polynomial time computability over structures without a
built-in order? Gurevich (1988) has given a rigorous formulation of this question. In
connection with Fagin’s Theorem, we noted that existential second-order logic charac-
terizes NP in a strong sense – not only is NP(Fs) = S1

1(Fs), for all s; there is an effective
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procedure for transforming sentences of existential second-order logic into polynomi-
ally clocked nondeterministic Turing machines that witness the membership of the
queries they define in NP. Likewise, in the case of P, we can ask if there is a logic L =
·SL, |=LÒ such that both SL and |=L are recursive and

1. L(Fs) = P(Fs);
2. there is an effective procedure F such that for every j Œ SL, F(j) is a polynomially

clocked deterministic Turing machine which accepts c(j(Fs)).

We call a logic meeting these requirements a logic for P. A logic for P amounts to 
an effective list of polynomially clocked deterministic Turing machines, each of which
decides a query, and which lists at least one machine deciding each query in P. The dif-
ficulty in constructing such an effective list lies in the requirement that the machines
must decide queries, that is, isomorphism invariant sets of structures. The set of
machines meeting this requirement is not recursively enumerable. This is not fatal to
the enterprise of constructing a logic for P, since we do not need to enumerate all the
polynomially clocked, isomorphism invariant machines, just a rich enough subset of
them. An obvious way to proceed would be as follows. A function C: D |Æ D is called
a graph canon, if and only if,

1. "G Œ D(G � C(G)), and
2. "G, H Œ D(G � H Æ C(G) = C (H)).

A graph canon extracts a unique representative from each equivalence class of D under
the equivalence relation of isomorphism. If there is a graph canon C that is computable
in polynomial time, then there is a logic for P. This is easily seen by composing C with
an effective list of polynomially clocked deterministic Turing machines which, for each
set of strings X Œ P, includes a machine which decides X – such an effective list can be
constructed absent the requirement that the machines decide queries. It is well-known
that if P = NP, then there is a polynomial time computable graph canon, which yields
the conclusion that if there is no logic for P, then P π NP. There is no evidence that the
converse holds, and the quest for a logic for P remains an active area of research in
descriptive complexity theory.

7 Infinitary Logics

In this section, we investigate a measure of logical complexity that has played a promi-
nent role in recent research in finite model theory. The measure is the total number of
variables, both free and bound, which occur in a formula of first-order logic, or its infini-
tary extension, L•w. First-order sentences which involve the reuse of bound variables
within the scopes of quantifiers already binding those same variables are generally
frowned on from a pedagogical and stylistic point of view. Thus, the study of finite vari-
able fragments of first-order logic and infinitary logic, whose point is to exploit the pos-
sibility of such reuse, typically seems a bit unusual, if not perverse, to most logicians.
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Consider the following sequence of first-order sentences, each of which contains
occurrences of only the two variables x1 and x2:

j0 Est

j1 $x1(Esx1 Ÿ Ex1t)

j2 $x1$x2(Esx1 Ÿ Ex1x2 Ÿ Ex2t)

j3 $x1$x2(Esx1 Ÿ Ex1x2 Ÿ $x1(Ex2x1 Ÿ Ex1t))

j4 $x1$x2(Esx1 Ÿ Ex1x2 Ÿ $x1(Ex2x1 Ÿ $x2(Ex1x2 Ÿ Ex2t)))

� �

Clearly, the sentences ji are pairwise inequivalent (consider the structures An for n > 1
which interpret E as the successor relation on [n] and assign 1 to s and and n to t; An |=
ji, if and only if, i + 2 = n). Note that although the sentences involve only two variables,
their quantifier rank is unbounded. Needless to say, these sentences cannot be brought
to prenex normal form without increasing the number of variables.

The logic L•w is the infinitary extension of first-order logic which is closed under the
formation of arbitrary conjunctions and disjunctions of sets of formulas. In Section 2,
we observed that every finite structure is characterized up to isomorphism by a single
first-order sentence, from which it follows that for every signature s, every query Q Õ
Fs is L•w definable. Thus, L•w is too strong to be of interest from the point of view of
finite model theory. Let us consider the weaker finite variable fragments of L•w. We define
Lk

•w to be the k-variable fragment of L•w, that is, Lk
•w consists of all formulas of L•w all 

of whose individual variables, either free or bound, are among x1, . . . , xk. We let Lw
•w =

»k<w Lk
•w. For example, let q, a sentence of L2

•w, be the infinite disjunction of the sen-
tences j0, j1, . . . , exhibited above. Observe that q defines R (directed reachability) 
relative to D (the set of finite directed graphs). This is no accident: Kolaitis and Vardi
(1992b) established that for every s, FO + LFP(Fs) Õ Lw

•w(Fs). Thus, the finite variable
fragment of infinitary logic provides a tool for analyzing inductive definability over finite
structures.

One of the main techniques for studying Lw
•w definability is the k-pebble game, a

variant of the Ehrenfeucht game, essentially due to Barwise (1977). In the k-pebble
game, instead of an unlimited supply of pebble pairs, the equipment contains only the
pebble pairs ·a1, b1Ò, . . . ·ak, bkÒ. At each round of play, the Spoiler may now either play
a pebble from a pair that has not yet been played and place it on the associated board,
or move a pebble that has already been played to a new position. As before, the
Duplicator must follow by moving the matched pebble on the other board. The winning
condition for the n-round game remains the same as before. There is also an infinite
version of the k-pebble game which we call the eternal k-pebble game. In this version,
play continues through a sequence of rounds of order type w. The Spoiler wins a play
of the eternal game, if and only if, he wins at some finite round; otherwise, the
Duplicator wins. We say that structures A and B are indistinguishable by sentences of
Lk

•w (A∫k
•wB), if and only if, for every sentence j Œ Lk

•w,

A |= j ¤ B |= j.
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Barwise proved that the Duplicator has a winning strategy for the eternal k-pebble game
played on A and B, if and only if, A∫k

•wB. Thus, we can show that a query Q Õ D is not
Lk

•w definable by exhibiting structures A, B Œ D, such that A Œ Q , B œ Q , and the
Duplicator has a winning strategy for the eternal k-pebble game played on A and B.

As an illustration of this technique, we show that P(D) Õ/ Lw
•w(D). We say that A Œ

D is an empty graph, if and only if, EA = 0/. It is easy to see, by playing the k-pebble game,
that for all empty graphs A and B, if A and B both have at least k nodes, then A∫k

•wB.
It follows at once that the set of graphs which have an odd number of nodes, a query
in P, is not definable in Lw

•w. It also follows that the languages Lk
•w form a strict hierar-

chy in terms of expressive power relative to D. We will meet Lw
•w again in the next

section.

8 Random Graphs and 0–1 Laws

In this section, we will take up some connections between finite model theory and 
combinatorics. We focus attention on the study of random graphs, an active area of
research in contemporary combinatorics.

Random graphs

Consider the following procedure for determining a directed graph with node set [n].
For each of the n2 ordered pairs of nodes flip a fair coin to determine whether or not
there is a directed edge from the first to the second; we assume the outcomes of the
tosses are mutually independent. For each n, this procedure gives rise to the uniform
probability distribution over Dn, the collection of directed graphs with node set [n]. We
may use this probability distribution to answer questions about how many graphs there
are with certain properties. We write Prn(q) for the probability (with respect to this 
distribution) that a graph with node set [n] satisfies q. Note that,

We will be interested in the behavior of Prn(q) as a function of n for various choices of
q. We write Pr(q) = limnÆ• Prn(q). In general, Pr(q) may not be defined. For example,
when q Œ S1

1 expresses the condition that there are an even number of nodes, Prn(q)
endlessly oscillates between the values 0 and 1 and thus has no well defined limit. On
the other hand, many interesting graph theoretic properties do possess a ‘limit proba-
bility’ with respect to the uniform distribution. We will see how logic provides some
explanation of this fact.

Let us begin with the example of connectivity: a directed graph A is connected, if
and only if, for each pair i, j of distinct nodes of A, there is a path from i to j. Let q be
the sentence of FO + LFP that defines the set of connected graphs relative to D. We wish
to discover whether Pr(q) is well defined, and if it is, whether we can determine its 

Prn q( ) =
card G ŒDn G{ = q}

cardDn
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value. In order to do so, we will attempt to approximate the value of Prn(q) for large
values of n.

Rather than dealing directly with q, let us consider the following first order condi-
tion which implies q. Let j be the following sentence:

("x)("y)(x π y Æ ($z)(x π z Ÿ y π z (Exz Ÿ Ezy).

The sentence j expresses the ‘two degrees of separation’ property – we can proceed
from any node to any other by a path of length two. Clearly, j implies q. Hence, for 
all n,

Prn(j) £ Prn(q).

Therefore, if we can show that Prn(j) becomes large, as a function of n, the same will
be true of Prn(q).

Let’s perform the calculation. Fix a pair of distinct nodes i, j Œ [n]. We say that a node
k links i to j, if and only if, there is an edge from i to k and an edge from k to j. Clearly,
for any fixed node k, distinct from i and j, the probability that k does not link i to j is .75.
So the probability that no node distinct from i and j links i to j is (.75)n-2. Now, there are
n(n - 1) ordered pairs of distinct nodes in [n]. Therefore, the probability that some pair
of distinct nodes in [n] fail to be linked is bounded from above by n(n - 1) ◊ (.75)n-2. That
is,

Prn(ÿj) £ n(n -1) ◊ (.75)n-2.

It is easy to show that

It follows at once that

Pr(q) = Pr(j) = 1.

So we have succeeded in analyzing the limiting behavior of graph connectivity by
reducing the problem to a simple calculation of the limiting behavior of a first-order
condition; and the limit probability of that condition is 1. To what extent can we gen-
eralize this example?

0–1 Laws

In this section we will consider a sweeping generalization of the preceding example of
connectivity. We say that a logical language L satisfies the 0–1 law with respect to the
uniform distribution over directed graphs, if and only if, for every sentence j of L,

   
lim . .
n

n
n n

Æ•

--( )◊ ( ) =1 75 0
2
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Pr(j) = 0 or Pr(j) = 1.

A bold generalization of the example of connectivity would be the following: FO + LEP
satisfies the 0–1 law for the uniform distribution over directed graphs. Indeed, this gen-
eralization is true, as was established by Blass et al. (1985). This result itself general-
ized the 0–1 law for first-order logic due to Fagin (1976) and Glebskij et al. (1969). A
striking generalization of these (and additional) results, which provides a beautiful
explanation for the limiting behavior of a variety of graph theoretic properties, is the
following 0–1 law for Lw

•w due to Kolaitis and Vardi (1992b): Lw
•w satisfies the 0–1 law

for the uniform distribution over directed graphs. Not only does this result generalize
the example of connectivity given above; its proof also follows the lines of the argu-
ment given for the example. In particular, the theorem is a corollary of the following
fascinating result, also due to Kolaitis and Vardi (1992b): For every k ≥ 2, there is a k-
variable first order sentence gk such that

1. Pr(gk) = 1, and
2. for every sentence q Œ Lk

•w, either gk |= q or gk |= ÿq.

In other words, for each k, there is a single first-order sentence which has limit proba-
bility 1 with respect to the uniform distribution on directed graphs and axiomatizes a
complete Lk

•w theory.
The sentence gk may be constructed as follows. A k-literal is a formula of the form

Exixj or its negation with 1 £ i, j £ k. A basic k-type is a maximal consistent conjunc-
tion of k-literals. A k-extension condition is a sentence of the form:

where j is a (k + 1)-type, y is a k-type, and y extends j. A graph satisfies such a k-
extension condition, if and only if, each of its size k - 1 subgraphs of type j can be
extended to a size k subgraph of type y. We let gk be the conjunction of all the l-exten-
sion conditions for 2 £ l £ k. The sentence gk expresses a ‘bounded principle of pleni-
tude:’ every subgraph of size l < k can be extended in every possible way to a subgraph
of size l + 1 (compare the two degrees of separation principle above). For k ≥ 3, it is not
at first sight obvious that there are finite structures with satisfy gk. However, an easy
computation, of just the sort sketched for the two degrees of separation principle,
reveals that Pr(gk) = 1 for all k ≥ 2. That is, for every e > 0, for large enough n, all but
an e fraction of the directed graphs of size n satisfy gk.

In order to verify that gk axiomatizes a complete Lk
•w theory, it suffices to show that

for all directed graphs A, B, if A |= gk and B |= gk, then A∫k
•wB. But this follows directly

from Barwise’s characterization of L∫k
•w given in Section 7, since it is easy to see that

the Duplicator has a winning strategy for the eternal k-pebble game played on A and
B, if both A and B satisfy gk. (Play the game! The description of gk as a bounded princi-
ple of plenitude is exactly what’s required for the Duplicator’s strategy.)

"x1 . . . "xk -1
i π j

xi π xj Ÿj( ) Æ$xk
i<k

xi π xk Ÿ y( )( ),
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Let us call a sentence j of first order logic stochastically valid, if and only if, Pr(j) =
1, and let Sval be the set of stochastically valid sentences of first order logic. It clear
from the preceding discussion that G = {gk Ô k ≥ 2} axiomatizes a complete first-order
theory, a result due to Gaifman (1964). In particular, G axiomatizes Sval. It follows at
once that Sval is decidable. This provides an interesting contrast to the results described
in Section 1.
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Further Reading

Two excellent texts are available which cover the topics presented here in depth. They are
Ebbinghaus and Flum (1999) and Immerman (1999). An invaluable introduction to the theory
of computational complexity is Papadimitriou (1994). For readers wishing further background
on finite variable logics there are valuable survey articles by Dawar (1999) and Grohe (1998)
and an excellent monograph by Otto (1997). An excellent introduction to the theory of random
graphs is Alon and Spencer (1992).
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