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The field of computational linguistics is as diverse as linguistics itself, so giv-
ing a thorough overview of the entire field in the short space available for this
chapter is essentially impossible. We have therefore chosen to focus on four
relatively popular areas of inquiry:

• syntactic parsing;
• discourse analysis;
• computational morphology and phonology;
• corpus-based methods.

The order of presentation is motivated by historical considerations. Parsing
and discourse analysis have had the longest continuous history of investigation,
and are therefore presented first. Computational morphology and phonology
only really began to grow as a separate discipline in the mid-1980s. Corpus-
based approaches were, in fact, investigated as early as the 1960s (e.g., by
Zellig Harris (1970)), but the field fell into disrepute until the late 1980s, since
which time there has been a renaissance of work in this area.

1 Parsing

Parsing is the act of determining the “syntactic structure” of a sentence. Although
syntactic theories differ on their notions of structure, the goal of such structure
is typically to represent “who did what to whom” in the sentence. Any natural
language processing system that needs to produce an interpretation from the
utterance that is deeper than a bag of keywords thus involves some form
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of parsing (see section 1.5 for examples of existing practical applications of
parsing).

Parsing typically involves tagging the words with an appropriate syntactic
category and determining their relationships to each other. More often than
not, words are grouped into phrase-like constituents, which are subsequently
arranged into clauses and sentences.

1.1 Phrase structure grammars

For the purposes of this section, we will restrict our attention to the most
widely studied form of grammars for computational purposes: context-free
phrase structure grammars. We will assume familiarity with phrase structure
grammars and the notion of phrase marker. Consider the following simple
context-free grammar for verb phrases and noun phrases with prepositional
modifiers:

VP → TV NP TV → saw, knows, liked, met
VP → VP PP NP → Sandy, Chris
NP → Det N N → kid, telescope, saw, field
NP → NP PP PP → outside, somewhere
PP → P NP P → in, on, near, with

Det → the, a, every

For any possible sequence of words, the grammar determines what, if any,
valid phrase structures it has. For example, the expression the kid has exactly
one analysis in this grammar, namely [NP [Det the] [N kid]]. According to this
grammar, the expressions kid the and the dog are also ungrammatical; the former
because there is no rule C → N Det (where C is any category) in the grammar,
the latter because there is no lexical entry for dog. Some expressions have mul-
tiple analyses, such as the classic example saw the kid with the telescope, which
has the two (abbreviated) structures [VP [VP saw the kid] [PP with the telescope]]
and [VP saw [NP [NP the kid] [PP with the telescope]]]. This example contains a
so-called structural ambiguity between the situation in which the prepositional
phrase with the telescope modifies the noun phrase the kid and one in which it
modifies the verb phrase saw the kid.

1.2 Parsing as search

Almost all parsers involve some notion of searching for possible analyses
for a given sequence of words. Top-down parsers are goal driven, and begin
their search from the answer (the top of a tree) and work down to the actual
expression input to the parser. Bottom-up parsers are data driven, beginning
from lexical categories from the input and combining them into larger phrases.
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1.2.1 Bottom up: shift-reduce parsing

One standard approach to bottom-up parsing is the shift-reduce framework,
which allows two operations: shifting lexical material (i.e., replacing words
with their grammatical categories) and reducing sequences of categories based
on rule applications. Parsing begins from the input sequence and the state of
the parse during parsing is represented by two sequences: the sequence of
words remaining to parse and the sequence of categories already found. For
instance, the prepositional phrase with the telescope would invoke the following
parser steps.

Words Categories Operation Rule
with the telescope found initialize
the telescope P shift P → with
telescope P Det shift Det → the

P Det N shift N → telescope
P NP reduce NP → Det N
PP reduce PP → P NP

The parser is initialized with the string and allows two operations. First, the
first word on the list of words can be replaced with one of its lexical entries
through shifting, as in the first two steps after initialization above.
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[D → w in lexicon]

In general, our rules operate on sequences of words to parse and categories
found, returning the same type of result. The first half of the input to the
above rule is a sequence of words w, u1, . . . , un, the first of which is the word
w we are going to lexically rewrite. The second half of the input is the cur-
rent set of categories found, C1, . . . , Cn. The result of the application of the rule
is the sequence of categories u1, . . . , un with the first element w from the input
removed, along with the sequence of categories C1, . . . , Cn, D where the lexical
entry category D has been added to the list of categories in the input.

The second operation allows the reduction of the rightmost sequence of
categories by means of a rule, as in the last two steps in the derivation above.
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[C0 → C1, . . . , Ck in grammar]

In this rule, the sequence of words w1, . . . , wn is unchanged. A final subse-
quence C1, . . . , Ck of categories from the input sequence of previously derived
categories D1, . . . , Dm, C1, . . . , Ck, is rewritten according to a grammar rule.
Thus because C0 → C1, . . . , Ck is a rule in the grammar, if we have found the
categories C1, . . . , Ck in the input, we can replace them with their mother
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category C0 from the rule. Note that we can restrict our application of gram-
mar rules to final subsequences without losing any parses.

In cases of ambiguity, there will be more than one alternative expansion at
some point in the parsing process. For instance, consider the expression saw
Sandy outside, which is a minimal length string displaying PP attachment
ambiguity. Here are the two derivations.

saw Sandy outside saw Sandy outside
Sandy outside TV Sandy outside TV
outside TV NP outside TV NP

TV NP PP outside VP
TV NP VP PP
VP VP

The critical decision here is made after the lexical categories for saw and Sandy
have been shifted, when it must be decided whether to shift the preposition
or complete the verb phrase. The parse trees can be straightforwardly recon-
structed from the steps taken by the parser.

1.2.2 Top-down: recursive-descent parsing
A standard approach to top-down parsing is by means of recursive descent.
This strategy involves recursively expanding categories until they match lex-
ical material. This can be modeled procedurally in much the same way as
bottom-up parsing, using a list of categories and of lexical material. The differ-
ence is that the list of categories are categories that have not been found yet, in
contrast to the shift-reduce parser, where the categories list constituents which
have already been found.

Words Categories needed Operation Rule
with the telescope PP initialize
with the telescope P NP expand PP → P NP
the telescope NP lex P → with
the telescope Det N expand NP → Det N
telescope N lex Det → the

lex N → telescope

With top-down parsing, initialization involves beginning with the category
being sought, which in the case above, is PP. Although it may look the same,
this is totally different from the representation in bottom-up parsing, because
the categories involved in a step of top-down parsing have not been found.

Two rules then define the search. The first allows lexical matching of the first
category being sought against the first of the remaining words.
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Thus if the first word we have on our list of words to be processed is w and
the current category we are seeking is D, then if there is a lexical entry of
category D for w, we can remove the word from the input sequence and the
category from the sequence of categories being sought.

The second scheme allows a category being sought to be expanded accord-
ing to a grammar rule.
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[C0 → C1, . . . , Ck in grammar]

This simply says that if there is a grammar rule C0 → C1, . . . , Ck and the first
category we are seeking is C0, then we can remove the C0 from the list of
categories being sought and replace it with the sequence of categories C1, . . . ,
Ck. As with bottom-up parsing, we can restrict the position of the rule applica-
tion without loss of generality. This time, we require the top-down rewriting to
be applied to the first category on the sequence of categories being sought.

Consider the resolution of attachment ambiguity by means of the top-down
processor.

saw Sandy outside VP saw Sandy outside VP
saw Sandy outside VP PP saw Sandy outside TV NP
saw Sandy outside TV NP PP Sandy outside NP
Sandy outside NP PP Sandy outside NP PP
outside PP outside PP

The criticial decision here is made before the verb phrase is expanded; we
must decide whether to expand it as a TV-NP sequence or as a VP-PP se-
quence, which decides the attachment.

1.2.3 Complexity of search-based parsing

In general, a search-based parser must explore the entire search space in order
to find all parses (or to reject a string as ungrammatical). The problem with
this is that the search space suffers a combinatorial explosion as the length of
the string grows. Consider a string of k prepositional phrases each consisting
of a preposition, determiner, and noun (for k = 4, an instance is beside the dog
near the radiator in the house by the street). The problem is that there are more
than 2(k−2) valid structural analyses of a sequence k preposition, determiner,
noun sequences. This means that both search-based parsing strategies will
require at least 2(k−2) steps to analyze a sequence of 3k words in the worst case.
The actual growth in number of analyses follows the Catalan Numbers:
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which give the number bn of binary bracketings (or equivalently parse tree
structures), for a string of length n.

Whether top-down or bottom-up parsers will be more efficient for a particu-
lar application depends on the grammar and input strings. Ambiguity in top-
down parsing stems from having many rules with the same mother category,
whereas ambiguity in bottom-up parsing arises from a high degree of lexical
ambiguity or by having a high degree of ambiguity in the daughters of rules.

1.3 Parsing as dynamic programming

Dynamic programming is a standard computational technique for keeping track
of subcomputations that have already been performed. In the context of parsing,
it will amount to keeping track of all possible analyses for each subsequence of
the input expression. The key insight is that we are dealing with context-free
languages. That is, the possible categories that we can assign to a sequence of
words does not depend on the context in which it is found. Thus no matter
how many ways there are to analyze a sequence (P Det N)k, the result is
always a prepositional phrase and the internal structure will not influence
how it can combine with other constituents in an analysis.

1.3.1 The Cocke–Kasami–Younger parser
The first and simplest parser involving dynamic programming is the Cocke–
Kasami–Younger (CKY) parser (Younger 1967). The principle here is to iterate
over ever-larger subsequences of the input, computing all possible analyses of
the subsequence and recording them for future analysis. CKY parsing is only
defined for grammars all of whose rules are binary branching, but there are
other parsers based on dynamic programming which work over arbitrary gram-
mars. For simplicity, we will restrict our attention to grammars all of whose
rules are binary branching. A table representing all such analyses for the string
saw Sandy outside is as follows, where the vertical axis represents starting posi-
tions and the horizontal axis represents ending positions.

1 2 3

1 TV, NP VP VP
2 NP NP
3 PP

For instance, the NP entry at (2, 3) indicates that there is a noun phrase span-
ning from the second to the third word, which is the string Sandy outside.
Similarly, the PP entry from (3, 3), indicates that the substring outside can be
analyzed as a prepositional phrase. The fact that there are two entries at (1, 1),
indicates that the string saw is ambiguous between a TV and NP.
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The method of constructing a matrix representation as above is to work
from small spans outward. This ensures that when we come to analyze a
longer sequence, all of the subsequences have been fully analyzed. We can
work left to right, and fill out the entries in the table above in the order (1, 1),
(2, 2), (3, 3), (1, 2), (2, 3), (1, 3). To fill in an entry (n, n) in the table, we simply
fill in all possible lexical entries for the nth word in the input. To fill in an entry
(n, m) for m > n, we inspect all break points k such that m ≤ k < n. This
enumerates all the ways a phrase spanning from n to m could be subdivided
into two subphrases. For each such k, we consider all possible ways to com-
bine the categories spanning the interval (m, k) with the categories spanning
the interval (k + 1, n) given the grammar rules. If there is a category C1 span-
ning (m, k) and a C2 spanning (k + 1, n), and there is a grammar rule C0 → C1C2,
then there will be a category C0 spanning (m, n). For instance, to fill in (1, 3)
above, we consider the break points 1 and 2. For (1, 1) we have a TV and an
NP, and for (2, 3) we have an NP, and we can combine TV-NP to produce a
VP, so VP is included in the categories in (1, 3), but there is no way to com-
bine an NP-NP sequence (in this grammar). The fact that we have an NP
spanning (1, 1) and an NP spanning (2, 3) does not add any further analyses.
The VP spanning (1, 2) and the PP spanning (3, 3) entails that we have a VP
spanning (1, 3). This represents the second way in which the string could be
analyzed.

It is fairly easy to see that the amount of work carried out under the CKY
approach is bounded by the number of boxes in the matrix and the amount of
work that could be done for each box. For an input of length n there are n2

possible boxes. For each box, we have to consider all possible split points of
which there are at most n, which leads to n3 points at which the grammar is
consulted. The amount of work to do at each split point is bounded by the
number of categories and rules in the grammar.

So what happens to our sequence of k prepositional phrases? Consider in the
box near the chair under the door, for k = 3. In addition to lexical entries, we wind
up with PP entries at (1, 3), (4, 6), (7, 9), (1, 6), (4, 9), and (1, 9), with NP entries
at (2, 3), (5, 6), (8, 9), (2, 6), (5, 9), and (2, 9).

1.4 Scaling up

We now know that we can build a parser for context-free grammars that takes
at most n3 steps for an input sequence of length n. For wide coverage applica-
tions, this is still prohibitive. For instance, the Penn Treebank (Marcus et al.
1993), a corpus of one million words drawn from the Wall Street Journal and
analyzed by hand, already involves an implicit grammar of roughly 8,000
rules and a lexicon of tens of thousands of words and is by no means com-
plete. Sentences average just over 21 words each. These sentences, when fed
back into the parser, result in hundreds of thousands and often millions of
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well-formed substrings. Current “large-scale” grammars for linguistic theories
such as HPSG and LFG run to hundreds of pages of coding for the lexicon,
lexical rules, and grammar.

1.5 Applications

Parsing has been successfully applied in a number of domains. State of the
art machine translation systems employ parsing to derive representations of
the input that are sufficient for transfer from the source to target language at
either the syntactic or semantic level. Simple parsing has been used to detect
phrasal boundaries for providing prosodic cues for use in speech synthesis.
A great deal of attention is being applied currently to the application of syn-
tactic parsing models for language modeling for automatic speech recognition.
There have also been successful applications in information retrieval, where
it is useful to know the syntactic form and arguments of phrases in retrieved
documents in order to increase retrieval accuracy. Along similar lines, parsing
has been used to generate database queries from natural language inputs.
Finally, there is a great deal of activity in the cognitive psychology community
aimed at explaining human sentence processing by modeling it as a parsing
process.

1.6 The future

Of course, most linguists would feel rather constrained by the restriction to
context-free grammars, and even more so by regular expressions. Unfortun-
ately, there has been very little work in parsing that goes beyond the context-
free grammar paradigm in a significant way. On the one hand, there has been
work in parsing formalisms such as lexical-functional grammar, generalized phrase
structure grammar, and head-driven phrase structure grammar, but these all de-
pend on a context-free backbone driving a parser with a slightly generalized
notion of category. Even approaches to dependency grammar parsing and trans-
formational grammar parsing have wound up relying on conversions in large
part to context-free representations. Tree-adjoining grammar parsers have been
developed that use dynamic programming, indexing subanalyses by left and
right external boundaries, as well as internal left and right boundaries for
adjunction.

2 Discourse Analysis

The area of discourse analysis is concerned with inferring the intended mean-
ings of utterances with respect to the world in which they were uttered, as
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well as with determining how utterances relate to one another to form a coherent
structure. Discourse analysis is pertinent both to understanding monologue
texts, as well as to correctly interpreting a conversational partner’s utterances
and subsequently providing an appropriate response in multi-party dialogues.
For instance, consider the following exchange between a bank teller (T) and a
customer (C):

(1) c : I want to transfer some money from my checking account to my credit card
account.

(2) t : What’s your checking account number?
(3) c : It’s 123 456 789.
(4) t : How much would you like to transfer?
(5) c : I’d like to pay off the balance on my credit card.
(6) t : Your credit card balance is $1,036.23, but you only have $962.14 in your

checking account.
(7) c: Okay.
(8) c: I’d like to pay the balance due today then.
(9) t: Okay, I have transferred $792.02 from your checking account to your credit

account.

In order for the dialogue participants to successfully carry out a dialogue
such as the above, they must be able to recognize the intentions of the other
participant’s utterances, and to produce their responses in such a way that
will enable the other participant(s) to recognize their intentions. For instance,
although utterance (5) does not directly provide an answer to the question in
(4), C produced it with the intention of it being a sufficient answer to T’s
question based on the assumption that T, being a bank teller, will be able to
look up the credit card balance. Furthermore, C must be able to recognize that
T’s utterance in (6), in addition to informing C of the balances in both accounts,
is intended to convey to C the invalidity of the combined proposed action in
(1) and (5). Finally, utterance (8) is intended as an alternative plan to satisfy a
slight variation of C’s original goal.

Discourse processing has been widely studied from a computational point
of view since the late 1970s. Up until the last few years, the computational
models developed for discourse analysis have, for the most part, taken a plan-
based approach based on the speech act theory (Austin 1962, Searle 1975).
Within this framework, the speaker is considered to have some goal he or she
wishes to achieve, and the utterances in the discourse, whether they be part of
a monologue or a dialogue, are actions that the speaker is carrying out in
order to achieve the intended goal. Allen and Perrault 1980, and Cohen and
Perrault 1979 pioneered this work in plan-based discourse processing in their
efforts to formulate a part of Austin’s (1962) speech act theory within a com-
putational framework. Their work focussed on formulating simple speech acts
such as request and inform within a plan-based computational framework, and
on recognizing indirect speech acts within the simple domain of providing
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S1

S2

S3 S4

(1) C: I want to transfer some money from my checking
account to my credit card account.

(2) T: What’s your checking account number?
(3) C: It’s 123 456 789.
(4) T: How much would you like to transfer?
(5) C: I’d like to  pay off the  balance  on my credit  card.
(6) T: Your credit  card balance is $1,036.23, but you only have

$962.14 in your checking account.
(7) C: Okay.
(8) I’d like to pay the balance due today then.
(9) T: Okay, I have transferred $792.02 from your checking

account to your credit account.

Figure 25.1 Sample dialogue and its discourse segments

users with information about either meeting or boarding a train. Since then,
strategies have been developed to handle more complicated tasks and more
sophisticated phenomena, such as incremental recognition of plans (Carberry
1990), and the recognition of ill-formed plans (Pollack 1990).

As discussed earlier, the goal of discourse processing is to understand utter-
ances with respect to the context (and the world), and to relate utterances to
one another. To illustrate this process, we further analyze the above dialogue
segment, which is shown again in figure 25.1 with additional discourse seg-
ment information included. In order to understand the overall dialogue seg-
ment S1, we must recognize that the dialogue is carried out in order to achieve
C’s goal of transferring money from a checking account to a credit card ac-
count, expressed by C in utterance (1). Furthermore, we must recognize that
dialogue segments S2 (comprising utterances (2) and (3)) and S3 (comprising
utterances (4)–(8)) are subdialogues initiated by T in order to solicit missing
information for carrying out C’s intended action, in this case, C’s checking
account number and the amount to be transferred, for segments S2 and S3,
respectively. Finally, we should recognize segment S4 (utterances (6) and (7))
as a subdialogue initiated by C to resolve a detected conflict between C and T
with respect to the validity of the plan proposed by C. In this case, T chooses
to resolve this conflict by providing evidence of why C’s original proposal is
invalid (utterance (6)) and then C subsequently proposes a valid alternative to
satisfy a slightly different goal (utterance (8)). Based on this analysis, the struc-
ture of this dialogue segment may be represented by the tree structure shown
in figure 25.2.

A plan-based discourse understanding system may be used to infer the
structure of a discourse, such as that shown in figure 25.2, given utterances
(1)–(9). The system infers the discourse structure in an incremental fashion, by
modeling the current discourse structure and determining how the next utter-
ance can best be incorporated into the current structure to form a coherent
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(1): Specify transfer-money action

(4)(5)&(8): Get dollar
amount

(6)&(7): Correct invalid proposal

(2)&(3): Get account number (9): Notify transfer

Figure 25.2 Dialogue structure for utterances (1)–(9)

piece of text or dialogue. For instance, given utterances (1)–(7), the discourse
understanding system would infer the part of figure 25.2 that includes these
utterances, i.e., the bulk of the left and center branches of the tree. Given utter-
ance (8), the system must then determine how this utterance best fits in with
the existing discourse structure, i.e., whether utterance (8) contributes to the
top level action specified by utterance (1), to the “get dollar amount” action
specified by utterances (4) and (5), to be “correct invalid proposal” action
specified by utterances (6) and (7), or initiates a new topic that forms the root
node of a separate discourse tree. A discourse understanding system capable
of performing such a task typically contains three components: (1) a library of
generic recipes (Pollack 1986), (2) the plan inference module, and (3) the system’s
private knowledge about the domain and about the world, and (optionally)
its beliefs about the dialogue participants and their beliefs. Below we sketch
the outline of the discourse understanding process.

A recipe is a generic template for performing a particular action. It typically
consists of a header that specifies the action being described, a set of precondi-
tions that specifies the conditions that must hold before the action is executed,
the body of the action, which comprises the subactions that must be performed
as part of performing the header action, and one or more goals, which are what
the person intended to achieve by performing the action. A recipe for the top-
level action in figure 25.2, Transfer-Money, is shown in figure 25.3. The header
of this recipe shows that the Transfer-Money action takes five parameters: ?teller,
who is the agent performing the transfer action, ?customer, the agent whose
money is being transferred, ?from-acct-type, the type of account from which
money will be drawn, ?to-acct-type, the type of account to which money will
be deposited, and ?amount, the amount of money to be transferred between
the specified accounts. The preconditions indicate that before the body of the
action can be executed, ?teller must know both account numbers and that the
balance in the “from account” must be greater than the amount to be trans-
ferred. The body of the action consists of two subactions, Transfer, which is the
actual performance of the transfer request, and Notify-Transfer, in which ?teller
notifies ?customer that the transfer request has been completed. Finally, the
goal of performing the Transfer-Money action is to increase the balance in the
“to account” by the amount transferred.
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Header: Transfer-Money (?teller,?customer,?from-acct-type,?to-acct-
type,?amount)

/* Gloss: ?teller transfers ?amount from ?customer’s ?from-acct-type to ?to-acct-type */
Preconditions: knowref(?teller,?from-acct-num,account-number(?from-acct-

type,?from-acct-num))
knowref(?teller,?to-acct-num,account-number(?to-acct-type,?to-
acct-num))
greater-than(balance(?from-acct-num),?amount)

Body: Transfer(?teller,?from-acct-num,?to-acct-num,?amount)
Notify-Transfer(?teller,?customer,?from-acct-type,?to-acct-
type,?amount)

Goal: increase-balance(?to-acct-type,?amount)

Figure 25.3 Recipe for the “transfer-money” action

The recipe library contains a collection of generic recipes such as the above,
and during discourse understanding, the plan inference module attempts to
infer utterance intentions and relationships using information provided by this
library. The plan inference process begins with the recognized semantic inter-
pretation of the speaker’s utterance, which is taken to be the observed action.
First, plan inference rules are applied to the observed action to infer other
higher level actions that may have resulted in the execution of the observed
action. This process, called forward chaining, hypothesizes parent actions of
observed or inferred actions, and results in a chain of hypothesized actions. A
parent action (Ai) may be chained to an inferred or observed action (Aj) if one
of two conditions holds. First, Aj may be in the body of the recipe for perform-
ing Ai; in other words, performing Aj contributes to performing Ai (Pollack
1986). In this case, we may hypothesize that Aj is performed as part of carrying
out the higher-level action Ai. Second, the goal of Aj may match a precondi-
tion in Ai; in other words, performing Aj enables performing Ai (Pollack 1986).
In this case, we may hypothesize that Aj is performed in order to make it
possible to perform the higher-level action Ai.1 Next, the plan inference process
attempts to incorporate the chain of hypothesized actions (inferred from the
new utterance) into existing discourse to form a coherent structure. The same
basic inference process is again used to link the root node of the chain to some
existing node in the discourse structure so that the root node of the chain either
contributes to or enables an action in the existing discourse structure. When
multiple interpretations are plausible, i.e., when the root node of the chain can
be linked to more than one existing action, additional heuristics may be used
to select from the possible interpretations. One such heuristic is the focussing
rule (McKeown 1985, Grosz and Sidner 1986, Litman and Allen 1987), which
prefers linking the chain to the node that is currently in focus in the discourse
structure.

Throughout the discourse understanding process, knowledge about the ap-
plication domain and about the world comes into play. For instance, knowledge
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Transfer-Money(T,C,checking,credit,?amount)

Introduce-Plan(C,Transfer-Money(T,C,checking,credit,?amount))

Inform(C,T,want(C,Transfer-Money(T,C,checking,credit,?amount)))

Surface-Inform(C,T,want(C,Transfer-Money(T,C,checking,credit,?amount)))

Figure 25.4 Existing discourse model after utterance (1)

about the domain allows us to recognize that a list of accounts for a user
can be easily obtained by a teller, and therefore satisfying one of the first two
preconditions in figure 25.3 (obtaining either ?from-acct-num or ?to-acct-num)
automatically satisfies the other. Furthermore, common sense knowledge allows
us to understand what the greater-than predicate means in the last precondi-
tion and to know that all valid instantiation for the variable ?amount must be
either integers or fixed point numbers with one or two decimal places.

Given this brief overview of the discourse understanding process, we now
illustrate how a portion of utterance (1)–(9) can be recognized to form part of
the discourse structure in figure 25.2. We show how utterances (2) and (3) are
interpreted with respect to utterance (1), which we assume to have already
been interpreted and incorporated into the existing discourse model shown in
figure 25.4. Utterance (2), based on its semantic representation, is recognized
as a Wh-Question. Since Wh-Question is in the body of the Request-Ref action
whose recipe is shown in figure 25.5, by forward chaining, the recognition sys-
tem hypothesizes that utterance (2), intended as a Wh-Question, is performed

Header: Request-ref(?speaker,?hearer,?var,?prop)
/* Gloss: ?speaker asks ?hearer the referent of ?var, which is a parameter in ?prop */
Preconditions: knowref(?speaker,?var,?prop)

believe(?speaker,knowref(?hearer,?var,?prop))
Body: Wh-Question(?speaker,?hearer,?var,?prop)
Goal: want(?hearer,Answer-Ref(?hearer,?speaker,?var,?prop))

Header: Obtain-info-ref(?speaker,?hearer,?var,?prop)
/* Gloss: ?speaker obtains from ?hearer the referent of ?var */
Preconditions: knowref(?speaker,?var,?prop)

believe(?speaker,knowref(?hearer,?var,?prop))
Body: Request-Ref(?speaker,?hearer,?var,?prop)

Answer-Ref(?hearer,?speaker,?var,?prop)
Goal: knowref(?speaker,?var,?prop)

Figure 25.5 Additional recipes for recognizing utterances in figure 25.1
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in order to perform a Request-Ref action. Furthermore, since Request-Ref is one
of the subactions in the body of Obtain-Info-Ref (figure 25.5), forward chaining
again leads the recognition system to infer Obtain-Info-Ref as the parent action
as Request-Ref. Since the goal of Obtain-Info-Ref (?teller,?customer,?num, account-
number (checking,?num)) is that ?teller knows ?customer’s checking account num-
ber, which matches the second precondition for the Transfer-Money action, this
Obtain-Info-Ref action is inferred to have been performed in order to enable the
Transfer-Money action in the existing discourse structure. Figure 25.6 shows the
existing discourse structure after utterance (2).

Utterance (3), on the other hand, is recognized as a Surface-Inform action,
which is again hypothesized to be an Inform action. The recognition com-
ponent then attempts to incorporate this chain of actions into the existing
discourse model by hypothesizing the antecedent actions of Inform and deter-
mining if each hypothesized chain of actions can be coherently linked to some
action in the existing discourse model. One hypothesized parent action of
Inform is Answer-Ref, which is the second subaction of Obtain-Info-Ref. As a
result, utterance (3) is recognized as providing a response to the question in
utterance (2). This analysis leads to the root node and the left branch of the
dialogue structure shown in figure 25.2.

A closer analysis of the actions in the discourse model in figure 25.6 shows
that our current representation of the discourse model conflates three differ-
ent types of actions. First, there are discourse actions that describe the com-
municative actions being carried out by each dialogue participant, including
actions such as Inform and Request-Ref. Second, there are domain actions (Litman
and Allen 1987) that specify the domain-specific actions that the dialogue
participants have chosen to satisfy their domain goal, such as Transfer-Money.
Finally, there are problem-solving actions (Allen 1991, Lambert and Carberry 1991,
Ramshaw 1991) which are meta-level actions describing how the dialogue par-
ticipants are going about constructing their domain plan. Examples of problem-
solving actions include Introduce-Plan, Evaluate-Plan, and Instantiate-Parameter.

Transfer-Money(T,C,checking,credit,?amount)

Introduce-Plan(C,Transfer-Money
(T,C,checking,credit,?amount))

Inform(C,T,want(C,Transfer-Money
(T,C,checking,credit,?amount)))

Surface-Inform(C,T,want(C,Transfer-Money
(T,C,checking,credit,?amount)))

Obtain-Info-Ref(T,C,?num,
account-number(checking,?num))

Request-Ref(T,C,?num,
account-number(checking,?num))

Wh-Question(T,C,?num,
account-number(checking,?num))

Figure 25.6 Existing discourse model after utterance (2)
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For a decade, researchers have developed models for discourse analysis that
distinguish between domain and discourse actions (Litman and Allen 1987), and
more recently, models that further distinguish between domain and problem-
solving actions (Lambert and Carberry 1991, Ramshaw 1991). By distinguishing
among these three types of actions, these models are able to apply action-type-
specific heuristics to the recognition process at each level while maintaining
the overall uniform plan inference process across all levels. In addition, by dis-
tinguishing between domain-independent discourse (and problem-solving)
actions and domain-specific actions, the models can be more easily ported to
new domains.

Finally, although in this section we have focussed on plan-based discourse
analysis, this is by no means the only method employed for computational
discourse analysis. It had, however, been the most widely adopted method
from the late 1970s until the early 1990s. Recently, with the success of applying
statistical methods to other areas of natural language processing, such as part-
of-speech tagging and parsing, researchers have started exploring applying
such methods to problems in discourse processing, such as discourse segmenta-
tion, discourse act recognition, etc. However, such work is still in its infancy,
and we expect much progress to be made with respect to statistical discourse
analysis in the next few years.

3 Computational Morphology and Phonology

In many areas of computational linguistics it is commonplace to treat words
as if they were atomic units with no internal analysis. A syntactic parser, for
example, might consider the fact that eats is a third singular present verb
form; but it would generally be of no interest to a parser that this word can be
morphologically analyzed into two components, namely a verb stem eat and an
affix +s, which marks form as being third singular present.

There are, nevertheless, applications of natural language technology where
such considerations become more important. In text retrieval, for example, the
problem is to search a large text database for a term or collection of terms, and
to retrieve documents containing those terms. Frequently one is interested not
only in finding the exact term, but also in finding morphological variants of
that term: a search for foxes should retrieve documents containing the word
fox, for instance.

As a second example, consider text-to-speech synthesis. In many languages,
how one pronounces a string of letters depends in large part on what the
morphological analysis of that string of letters is. It helps, for example, to
know that the analysis of misled is mis+led in order to avoid pronouncing it as
[mÍz@ld] (misle+d).

This section will illustrate some basic approaches to word-form ana-
lysis. Roughly speaking, the topics that will be covered can be classified into
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computational morphology, which treats the analysis of word structure per se;
and computational phonology, which (to a first approximation at least), deals with
the changes in sound patterns that take place when words are put together.
Since analysis of word structure invariably presumes that one can “untie” the
effects of sound changes, we will start with computational phonology.

3.1 Computational phonology

As a straightforward example of phonological alternations within words, con-
sider the formation of partitive nouns in Finnish. The partitive affix in Finnish
has two forms, -ta, and -tä; the form chosen depends upon the final harmony-
inducing vowel of the base. Bases whose final harmony-inducing vowel is
back take -ta; those whose final harmony-inducing vowel is front take -tä. The
vowels i and e are not harmony inducing; they are transparent to harmony.
Thus in a stem like puhelin “telephone,” the last harmony-inducing vowel is u,
so the form of the partitive affix is -ta.

(1) Nominative Partitive Gloss
taivas taivas+ta “sky”
puhelin puhelin+ta “telephone”
lakeus lakeut+ta “plain”
syy syy+tä “reason”
lyhyt lyhyt+tä “short”
ystävällinen ystävällinen+tä “friendly”

This alternation is part of a much more general vowel harmony process in
Finnish, one which affects a large number of affixes. Within theoretical lin-
guistics, there have been various approaches to dealing with phonological
alternations such as the one exemplified in (1). For the purposes of this dis-
cussion we can assume a traditional string-based rewrite-rule analysis, rather
than a more up-to-date prosodic declarative analysis: from the point of view
of computational phonology, our choice here is largely irrelevant, since it is
roughly equally straightforward to implement a modern analysis as it is a
more traditional analysis. The latter is a little easier to understand, however.

A rewrite analysis – one that is an oversimplification of Finnish vowel har-
mony, but one that will do for current purposes – is given below:

(2) a → ä / [ä, ö, y] C* ([i, e] C*)* ___

This rule simply states that an a is changed into ä when preceded by a vowel
from the set ä, ö, y, with possible intervening i, e and consonants. This rule thus
makes a particular assumption about the alternation in (2), namely that in a
form like -tä, the vowel is underlyingly /a/, and that the underlying form of
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the partitive affix is therefore -ta, a form that surfaces only when preceded by
back and neutral vowels.

A computational model that implements this alternation would seek to
change /a/ into /ä/ in the appropriate environment; this is of course stated
from the point of view of generating a surface form from an underlying
sequence of morphemes. An equally legitimate (and actually much more
widespread) interpretation is that one wishes to reconstruct the lexical form
from the surface form: thus from syytä one wishes to reconstruct syy+ta. An
ideal computational model would make these two interpretations, generation
and analysis, equally easy to implement. One important property of finite-state
transducers – the most widespread computational device that is used to imple-
ment phonological rules – is precisely this reversibility.

A finite-state transducer can be thought of as a variant on a finite-state
acceptor (also often termed finite-state automaton), something familiar to any-
one who has taken an introductory formal language theory course (see, e.g.,
Hopcroft and Ullman 1979). A finite-state acceptor, it will be recalled, is a
device that has a finite number of states (hence its name), one of which (typic-
ally) is designated as a start state, and some subset of which are designated as
final states. Transitions between states are termed arcs – there may be zero or
more arcs going from any state si to any other state sj – and each arc is labeled
with a single element from a predesignated alphabet, or else it is labeled with
the empty string element ε, in which case it is termed a null arc. A given string
made up of elements from the alphabet is accepted by a given acceptor if and
only if one can start at the start state of the acceptor, move from one state to
the next matching the label of the arc against the next element of the input,
and end up in a final state, having consumed all of the input. The set of strings
accepted by an automaton is termed the language of that automaton, and the
set of all languages accepted by all possible finite-state automata is the set of
regular languages.

A finite-state transducer differs from a finite-state acceptor in having, not
a single label on an arc, but rather a pair of labels, one being the input label,
the other the output label. The machine works much as does an automaton,
except that in addition to matching the input label against the symbol of the
input, one also replaces it with the output label. Thus transducers transduce
input strings into potentially different output strings. Note that either the
input label or the output label might be ε : in the former case, one may transi-
tion an arc matching nothing on the input side (and thus consuming no input),
but at the same time inserting a symbol on the output side; in the latter case,
one must match the input label against the input, but the effect of transiting
the arc is to delete the input symbol. Since transducers relate sets of pairs of
(input and output) strings, they are said to compute relations: the set of rela-
tions computed by all possible finite-state transducers is termed the set of
regular relations.

Returning now to phonology, it has been known for several decades ( Johnson
1972, Kaplan and Kay 1994), that systems of standard phonological rewrite
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a:A

e:e

i:i

A:A

O:O

y:y
C:C

1

a:a

e:e

i:i

o:o

u:u

C:C

0

A:A

O:O

y:y

o:o

u:u

Figure 25.7 An FST implementation of the rule in (2)
Note: A represents ä, O represents ö, and C represents any consonant. The labels on the arcs
represent the symbol-to-symbol transductions, with the input on the left and the output on the
right of the colon.

rules, given certain restrictions, constitute regular relations: that is, the rela-
tion between the set of all possible lexical forms of a language, and the set of
all possible surface forms is a regular relation. This means that phonological
rule systems can be modeled as finite-state transducers, and there has to date
been a large amount of work that develops this idea (e.g., Koskenniemi 1983,
Karttunen 1983, Karttunen et al. 1992), and explicit methods for compiling
transducers from phonological rewrite rule descriptions have been developed
(e.g., Kaplan and Kay 1994, Mohri and Sproat 1996). The desired reversibility,
discussed above, comes about quite simply. Suppose one has constructed a
transducer that maps from lexical forms (as input) to surface forms (as out-
put). One can produce a device that maps the other way by simply inverting
the input and output labels on each arc.

It is time to give an example of a finite-state transducer, and for this we
return to the alternation given in (1) and described by the rule in (2). A trans-
ducer that implements this rule is shown in figure 25.7. In this transducer,
state 0 is the initial state, and both states 0 and 1 are final states. The machine
stays in state 0, transducing a to itself, until it hits one of the front vowels in
the input ä, ö, y, in which case it goes to state 1, where it will transduce input
a to ä.

The approach to computational phonology outlined here is fairly traditional,
and it presumes a model of phonology that is certainly not current. More
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up-to-date computational models include declarative approaches such as (Bird
and Ellison 1994), as well as various implementations of optimality theory. In
many cases, the computational devices used are formally rather similar to the
transducers discussed here; in Bird and Ellison’s case, for instance, finite-state
acceptors are used. This is an interesting point to take note of, since while
much has recently been made of the advantages of declarative, constraint-
based approaches over traditional rule-based approaches, at the computational
level, at least, the differences between models are often rather minimal.

3.2 Computational morphology

As with computational phonology, the most popular computational models
of word structure have been finite-state ones (or ones that are mathematically
equivalent to finite-state). This is by no means the only approach that has been
taken, and indeed there are certainly limitations in finite-state methods, as has
been discussed elsewhere (e.g., Sproat 1992). Nonetheless, a sufficiently rich
array of morphological phenomena can be handled with finite-state devices
that it will be reasonable to restrict our attention to finite-state approaches
here.

As a concrete example of computational morphological modeling, let us
consider a simple subset of Spanish verbal morphology, consisting of three
verbs, hablar “speak,” cerrar “close,” and cocer “cook,” conjugated in the present
and preterite indicative forms; these are given in table 25.1. Note that these

Table 25.1 Some regular verbal forms in Spanish

Features hablar cerrar cocer

ind pres 1sg hablo cierro cuezo
ind pres 2sg hablas cierras cueces
ind pres 3sg habla cierra cuece
ind pres 1pl hablamos cerramos cocemos
ind pres 2pl habláis cerráis cocéis
ind pres 3pl hablan cierran cuecen

ind pret 1sg hablé cerré cocí
ind pret 2sg hablaste cerraste cociste
ind pret 3sg habló cerró coció
ind pret 1pl hablamos cerramos cocimos
ind pret 2pl hablasteis cerrasteis cocisteis
ind pret 3pl hablaron cerraron cocieron
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Table 25.2 An arclist model of Spanish verbal morphology

START ar habl hablar vb
START ar cerr diph cerrar vb
START er coc diph c/z cocer vb
ar WORD +o# +ind pres 1sg
ar WORD +as# +ind pres 2sg
ar WORD +a# +ind pres 3sg
ar WORD +amos# +ind pres 1pl
ar WORD +’ais# +ind pres 2pl
ar WORD +an# +ind pres 3pl
ar WORD +’e# +ind pret 1sg
ar WORD +aste# +ind pret 2sg
ar WORD +’o# +ind pret 3sg
ar WORD +amos# +ind pret 1pl
ar WORD +asteis# +ind pret 2pl
ar WORD +aron# +ind pret 3pl
er WORD +o# +ind pres 1sg
er WORD +es# +ind pres 2sg
er WORD +e# +ind pres 3sg
er WORD +emos# +ind pres 1pl
er WORD +’eis# +ind pres 2pl
er WORD +en# +ind pres 3pl
er WORD +’i# +ind pret 1sg
er WORD +iste# +ind pret 2sg
er WORD +i’o# +ind pret 3sg
er WORD +imos# +ind pret 1pl
er WORD +isteis# +ind pret 2pl
er WORD +ieron# +ind pret 3pl
WORD

three verbs come from two conjugations, namely the -ar conjugation (hablar
and cerrar) and the -er conjugation (cocer). Also note the “spelling changes” in
some of the stem forms, in particular the diphthongization of the stem vowel
in certain positions in cerrar (cierr-) and cocer (cuec-), and the c/z alternation in
the stem of cocer.

A simple finite-state model that allows one to recognize these verb forms is
what we will term an arclist model, following (Tzoukermann and Liberman
1990), represented in table 25.2. Verb stems are represented as beginning in the
initial state, and going to a state which records their paradigm affiliation, -ar or
-er. From the paradigm states, one can get to the final WORD state by means of
appropriate endings for that paradigm. The verb stems for cerrar and cocer
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have lexical features diph and c/z, which trigger the application of spelling
changes. This arclist can easily be represented as a finite-state transducer; see
figure 25.8.

The spelling changes necessary for this fragment involve rules to diphthong-
ize vowels, change c into z, and delete grammatical features and the morpheme
boundary symbol. Thus the first of the following set of rules changes e into ie
if it is followed by zero or more consonants (C*), zero or more lexical features
(feat*), the lexical feature diph, possible other features, and then a morpheme
boundary followed by a vowel and an optional consonant sequence. The sec-
ond rule similarly changes o into ue. The third rule changes c into z in stems
marked with the c/z feature before [+back] vowels. Finally the last rule deletes
lexical features and boundary symbols:

(3) e → ie / __ C* feat* diph feat* + V C* #
o → ue / __ C* feat* diph feat* + V C* #
c → z / __ feat* c/z + [+back]
(feature V boundary) → E

(Note that it is not claimed that this is a correct set of rules for handling
Spanish morphographemics in general: it is merely presented as a solution for
the small fragment under discussion.) Following the discussion in section 3.1,
we can represent this set of rules as a finite state transducer. One useful prop-
erty of finite state transducers is that they are closed under composition: that is, if
one has a finite state transducer T1, that maps from set x to set y, and another
transducer T2 that maps from set y to set z, one can compose T1 and T2 together
– notated as T1 ° T2 – to obtain a third transducer T3, that maps from x to z.
Armed with this, we can produce a transducer that maps directly from lexical
to surface forms, by simply composing the transducer representing the lexicon
(figure 25.8) with the transducer representing the rules in (3). As we also noted
in section 3.1, finite state transducers are invertible; hence one can simply
invert this transducer to obtain one that maps from surface to lexical forms.
This transducer is represented in figure 25.9.

Strictly finite-state models of morphology are in general only minor variants
of the model just presented. For example, the original system of Koskenniemi
(Koskenniemi 1983) modeled the lexicon as a set of letter tries, which can
be thought of as a special kind of finite automaton. Morphological complex-
ity was handled by continuation patterns, which were annotations at the end
of morpheme entries indicating which set of tries to continue the search in.
But, again, this mechanism merely simulates an E-labeled arc in a finite-state
machine. Spelling changes were handled by two-level rules implemented as
parallel (virtually, if not actually, intersected) finite-state transducers. Search
on the input string involved matching the input string with the input side of
the two-level transducers, while simultaneously matching the lexical tries with
the lexical side of the transducers, a process formally equivalent to the model
we have presented here.
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4 Corpus-based Methods

The word corpus is borrowed from Latin, in which it means “body.” The word
corpus is commonly used to refer to a body of writings of some sort, and in
linguistics, this is typically a collection of texts. In the speech sciences, a collec-
tion of audio recordings, possibly transcribed and labeled, is also often referred
to as a corpus. The corpus can consist simply of plain text, or it can be annotated
using some set of special symbols. For example, it can be marked up according
to an SGML scheme to convey information about the textual structure, which
is to be interpreted by, say, a web browser. Or the corpus can be annotated
to indicate structure according to some theory of linguistics. One example is
assigning a part-of-speech (PoS) tag – a linguistically motivated label – to each
word in the text; another example is assigning a parse tree – a hierarchical
analysis using some grammar of rewrite rules – to each sentence in the text.

Corpora have been widely used by linguists to identify and analyze lan-
guage phenomena, and to verify or refute claims about language. However,
a corpus is normally considered to be more than the mere sum – or rather
concatenation – of its parts, especially in the field of computational linguistics;
it also reveals important quantitative information about the distribution of
various language phenomena. This ranges from rather trivial observations
such as “the most frequent word in almost any English text is the word the,” to
more sophisticated inferences in the vein of “there is a tendency to move long
noun phrases towards the end of a clause.”

The aspect of conveying quantitative information means that the corpus
must in some sense be representative of the (sub)language from which it is
drawn. Thus, a collection of “laboratory sentences,” such as That that Kim
snores annoyed Sandy surprised Chris, where each sentence has been included
because it exhibits some interesting language phenomenon, does not quite
qualify as a corpus. Such a collection of linguistically interesting examples is
of course a very useful resource in itself for testing theories or developing
language-processing systems, but it is usually referred to as a test suite, rather
than a corpus. Indeed, much of the work in corpus-based computational lin-
guistics has been concerned with extracting the quantitative information con-
tained in a corpus and reformulating it in a more concise way, i.e., to extract a
quantitative language model from the corpus. The purpose of the extracted
language model is usually to study language as such, or to build language-
processing devices. There are, however, other uses for such a compact descrip-
tion of language: speech recognition and text compression.

In text compression, the goal is to save storage space, and to this end, a
language model can be very useful. And indeed, very similar work has pro-
gressed in parallel in the fields of language modeling and text compression.
The scenario here is that you wish to encode a text as a sequence of binary
digits. We can of course simply write down the seven-bit ASCII representation
of each character in the text, and we are done. We could alternatively find
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some numbering of the words and instead write down the binary representa-
tion of the word number, most likely saving a lot of storage space. We could
save even more space by having different lengths of the binary representations
of the words, and encode more frequent words using shorter digit sequences.
This is the basic idea behind coding schemes such as Huffman coding (see, e.g.,
Crochemore and Rytter 1994).

In speech recognition, we wish to try to predict the next word of an utter-
ance, given the previous sequence of words in it, to constrain the search space
of the speech recognizer. Also to this end, a language model can be very
useful, and indeed, speech recognition has been a driving force in language
modeling research. In particular, the word bigram model, to be discussed shortly,
has proved crucial for much of the progress in the field of speech recognition.

Let us consider a very simple language model, namely a word-pair gram-
mar. This grammar specifies what word can follow what other word. It might
for example allow the word computer, but not the word is, to follow the word
the. Such a model can easily be extracted from a plain-text corpus by simply
observing what words follow each other in the corpus. This language model is
best represented as a finite-state automaton (FSA). Each state of the automaton
corresponds to a word, and a directed arc from one state to another indicates
that the word of the second state can follow the word of the first state.

This model does not, however, capture any quantitative information. To
remedy this, we add probabilities to the scheme; we now specify the probabil-
ity of any word following any other word. For example, we might stipulate
that the probability of the next word being computer, given that the current
one is the, is 0.0042, while the probability of the next word being is is exactly
zero. This is known as a word bigram model, and the probabilities are called
bigram probabilities. This model is best represented as a probabilistic finite-state
automaton. We now attribute a transition probability to each arc, which is the
conditional probability of the next state given the current one, which in turn is
just the bigram probability. We could in fact use this model to generate sen-
tences: given the current state, i.e., the current word, we draw a next state at
random, according to the transition probabilities, transit to it, and output the
word corresponding to the state reached, etc. Such a model is known as a
generative language model, which is the kind of language model used in, e.g.,
speech recognition.

The bigram probabilities can be estimated from a plain-text corpus by
simply counting relative frequencies: if the word the occurred 10,000 times in
the corpus, and the word computer followed it 42 times, we estimate the cor-

responding bigram probability to be 
  

42
10 000,

 = 0.0042. If, on the other hand, we

saw no instance of the word is following the word the, we assign this bigram
probability the value zero. However, a little afterthought yields us the insight
that these zero probability bigrams might not be all that desirable; just because
we didn’t see the word small following the word the doesn’t mean that it cannot
do so in new, hitherto unseen texts, which the zero probability would imply.
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To remedy this, we resort to the black art of smoothing the probability estim-
ates. This typically takes the form of a Robin Hood strategy, stealing prob-
ability mass from those who have, and giving it to those who have not. As a
concrete example, to avoid the zero bigram probabilities, let us simply assign
half a count to any word with zero observed count when doing the relative-
frequency estimate. This means that the probability of the word small following

the word the will be 
  

1
2

15 000,
 = 0.000033.2 Indeed, much research in language

modeling for speech recognition has been on the theme of improving the
smoothing techniques.

Let us now turn to linguistically annotated corpora. The perhaps simplest,
and currently most popular approach is to assign to each word in the corpus a
part-of-speech (PoS) tag, which is a linguistically motivated label. The set of
possible PoS tags can consist of a small set of atomic labels – such as the basic
word classes adjectives, adverbs, articles, conjunctions, nouns, numbers, pre-
positions, pronouns, and verbs, essentially introduced already by the ancient
Greek Dionysius Thrax – or of a complex hierarchical tag set3 such as the one
used in the annotation of the Susanne corpus (Sampson 1995), which consists
of over 400 different tags. The tags can even indicate the syntactic role of each
word, such as subject, object, adverbial, etc.

Such a representation can be used for disambiguation, as in the case of the
well-known, highly ambiguous, and very popular example sentence Time flies
like an arrow. We can for example prescribe that Time is a noun, flies is a verb,
like is a preposition (or adverb, according to taste), an is an article, and that
arrow is a noun. We realize that words may be assigned different labels in
different contexts, or in different readings; for example, if we instead prescribe
that flies is a noun and like is a verb, we get another reading of the sentence.
Thus, achieving the most appropriate reading of any given sentence can be
done by finding the most likely assignment of tags to the words in it. There is
an appropriate extension to the probabilistic finite-state automata encoding
the word bigram models that is well suited for this task, namely hidden Markov
models (HMMs). This allows us to automatically make a preferred assignment
of PoS tags to previously unseen text. Such a processing tool is known as an
HMM-based PoS tagger.

To visualize a bigram tagger, consider the FSA representing the word bigram
model, but replace the words with PoS tags. This gives us a tag bigram model,
where the states correspond to tags. In the word bigram model, we could gen-
erate a sentence by moving around between states and outputting the word
corresponding to the current state after each move. We will still move around
between the states, but instead of outputting the corresponding tag, we will
output a word. The word will be drawn at random according to a probability
distribution associated with the current state, i.e., with the current tag. So if
the current state corresponds to the tag noun, we expect the probability of the
word the or the word is to be very low, if not zero, whereas when we transit to
the state corresponding to the tag article, we expect the probability of the word
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Figure 25.10 Two analyses of “I saw a man with a telescope”

the to rocket. The model is hidden in the sense that we cannot observe the state
(tag) sequence, only the word sequence. The model has the Markov property
since it is modeled by a probabilistic FSA, and the current state is the only
memory of the previous history left to condition the transition and word prob-
abilities on. The disambiguation task of finding the most likely tag assignment
to the words of a given sentence, i.e., to guess the state sequence that generated
the given word sequence, can be performed efficiently by a simple dynamic
programming technique known as Viterbi search.

Some ambiguity is caused by the way the words relate to each other,
rather by what PoS tag is assigned to them. In the case of the equally famous
example sentence I saw a man with a telescope, the open question is: Who had
the telescope, the man or I? We realize that in both cases, we have the same
assignment of PoS tags; I is a pronoun (Pron), saw is a verb (V), a is an article
(Art) twice, with is a preposition (Prep), and man and telescope are both nouns
(N). The way linguists traditionally analyze this is to say that the prepositional
phrase (PP) with a telescope modifies the word saw if I used the telescope to see
the man, and modifies the word man if the man had the telescope. One way to
distinguish between these two alternatives is to assign a parse tree to the
sentence. The two parse trees corresponding to the two different analyses are
shown in figure 25.10.

The idea here is that some formal grammar consisting of rewrite rules allows
us to rewrite the top symbol4 as a sequence of strings and the end result is the
given sentence. The following simple grammar allows deriving the two differ-
ent readings of I saw a man with a telescope from S:

S → NP VP Pron → I
VP → V NP V → saw
VP → VP PP Art → a
PP → Prep NP Prep → with
NP → NP PP N → man
NP → Pron N → telescope
NP → Art N
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Here is the derivation corresponding to the man having the telescope:

S ⇒ NP VP ⇒ Pron VP ⇒ I VP ⇒ I V NP ⇒ I saw NP ⇒ I saw NP PP ⇒
I saw Art N PP ⇒ I saw a N PP ⇒ I saw a man PP ⇒ I saw a man Prep
NP ⇒ I saw a man with NP ⇒ I saw a man with Art N ⇒ I saw a man with
a N ⇒ I saw a man with a telescope

Since any “grammatical” sentence can be derived from the top symbol S, this
is also a generative language model.

A parse tree is a hierarchical representation5 of a derivation. You may have
noticed that in each derivation step, the leftmost possible grammar symbol
was always rewritten. This is called a leftmost derivation, and is used to estab-
lish a one-to-one correspondence between derivations and parse trees; parse
trees don’t care in which order the various grammar symbols are rewritten,
but derivations do. We realize that we can assign a parse tree to each sentence-
level unit in our corpus to specify a particular reading of each one. Such an
annotated corpus is usually referred to as a tree bank (e.g., Marcus et al. 1993).

We will finally look at a language model that we can extract from a tree
bank that allows us to automatically assign preferred parse trees to previously
unseen input text. We note that the only difference between the two parse
trees, and between the two derivations, of the example sentence is that in one
of them, we used the grammar rule VP → VP PP, whereas in the other one, we
used the grammar rule NP → NP PP to attach the prepositional phrase. Now,
if we assign probabilities to every grammar rule, we can assign a probability
to each parse tree, or derivation, by simply multiplying the probabilities of the
rules used. This would allow us to select the parse tree with the highest prob-
ability when disambiguating. We recall that in a derivation, we must always
rewrite the leftmost possible grammar symbol. This means that we really don’t
have any choice as to which grammar symbol to rewrite, and it makes sense to
have the probabilities sum to one for each left-hand-side (LHS) grammar sym-
bol separately. Such a grammar is called a stochastic (or probabilistic) context-free
grammar (SCFG or PCFG).

The following is our previous grammar, now equipped with probabilities:

S → NP VP 1.00 Pron → I 1.00
VP → V NP 0.65 V → saw 1.00
VP → VP PP 0.35 Art → a 1.00
PP → Prep NP 1.00 Prep → with 1.00
NP → NP PP 0.25 N → man 0.58
NP → Pron 0.30 N → telescope 0.42
NP → Art N 0.45

This stochastic grammar tells us to prefer the reading where I had the tele-
scope, since the probability of the rule VP → VP PP, 0.35, is higher than the
probability of rule NP → NP PP, 0.25, and since the derivations differ only in
the use of these two rules. In practice, we would estimate the rule probabilities
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from the relative frequencies of the rules in a tree bank, adding a measure of
smoothing techniques for increased robustness.

We conclude by noting that the independence assumptions underlying the
statistical model, namely that the only conditioning of the probabilities is on
the LHS symbol of the grammar rule, exactly mirror the context-free assump-
tion of the underlying context-free grammar. This means, amongst other things,
that for any algorithm for parsing with a context-free grammar, there exists an
equally efficient variant of it for finding the most probable parse tree of any
given sentence, and for calculating the sentence probability, which is formally
defined as the sum of all possible derivation probabilities, under a stochastic
context-free grammar.

NOTES

its previous value 0.0042 to 
  

42
15 000,  =

0.0028 – Robin Hood at work!

3 A hierarchical tag set is a set of
labels with successively finer distinc-
tions, e.g., N for noun, NS for singu-
lar noun, NSM for singular masculine
noun, NSMN for singular masculine
nominative noun, etc.

4 Typically S, for sentence.
5 Not to be confused with a hierarchical

tag set.

A general introduction to natural language
understanding, which includes a discus-
sion of parsing and discourse analysis, is
Allen 1995. An introductory text to com-
putational morphology and phonology
is Sproat 1992. A standard text for intro-
ductory formal language theory – a pre-
requisite to further study of several topics
introduced in this chapter – is Hopcroft
and Ullman 1979.

There are several papers that address
issues in parsing of various particular syn-
tactic theories: for LFG, see Kaplan and
Bresnan 1982; for HPSG, Carpenter 1992;
for GB, Stabler 1992. Finally for a discus-
sion of some issues related to computa-
tional complexity and natural language,
see Barton et al. 1987.

FURTHER READING

1 In hypothesizing parent actions, in
addition to satisfying either the con-
tribution or enablement relationships,
further constraints are placed by exam-
ining the preconditions in the recipes
for the hypothesized parent actions.
We will not provide the details in this
chapter; interested readers should refer
to Carberry 1990.

2 The denominator increased from 10,000
to 15,000, say, due to all the extra half
counts, which in turn reduced the
probability of the word computer from


