
Correlation Basic techniques for analysing data 67

Introduction
Correlation analysis is concerned with measuring the degree of
association between two variables, x and y. Initially, we assume that
both x and y are numerical, e.g. height and weight.

Suppose we have a pair of values, (x, y), measured on each of the
n individuals in our sample. We can mark the point corresponding 
to each individual’s pair of values on a two-dimensional 
scatter diagram (Chapter 4). Conventionally, we put the x variable
on the horizontal axis, and the y variable on the vertical axis in this
diagram. Plotting the points for all n individuals, we obtain a scatter
of points that may suggest a relationship between the two variables.

Pearson correlation coefficient
We say that we have a linear relationship between x and y if a
straight line drawn through the midst of the points provides the 
most appropriate approximation to the observed relationship. We
measure how close the observations are to the straight line that best
describes their linear relationship by calculating the Pearson
product moment correlation coefficient, usually simply called 
the correlation coefficient. Its true value in the population, r (the
Greek letter, rho), is estimated in the sample by r, where

which is usually obtained from computer output.

Properties
• r ranges from -1 to +1.
• Its sign indicates whether one variable increases as the other vari-
able increases (positive r) or whether one variable decreases as the
other increases (negative r) (see Fig. 26.1).
• Its magnitude indicates how close the points are to the straight
line. In particular if r = +1 or -1, then there is perfect correlation
with all the points lying on the line (this is most unusual, in prac-
tice); if r = 0, then there is no linear correlation (although there may
be a non-linear relationship). The closer r is to the extremes, the
greater the degree of linear association (Fig. 26.1).
• It is dimensionless, i.e. it has no units of measurement.
• Its value is valid only within the range of values of x and y in the
sample. Its absolute value (ignoring sign) tends to increase as the
range of values of x and/or y increases and therefore you cannot
infer that it will have the same value when considering values of x
or y that are more extreme than the sample values.
• x and y can be interchanged without affecting the value of r.
• A correlation between x and y does not necessarily imply a ‘cause
and effect’ relationship.
• r2 represents the proportion of the variability of y that can be
attributed to its linear relationship with x (Chapter 28).
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Figure 26.1 Five diagrams indicating values of r in different situations.
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When not to calculate r
It may be misleading to calculate r when:
• there is a non-linear relationship between the two variables 
(Fig. 26.2a), e.g. a quadratic relationship (Chapter 33);
• the data include more than one observation on each individual;
• one or more outliers are present (Fig. 26.2b);
• the data comprise subgroups of individuals for which the mean
levels of the observations on at least one of the variables are differ-
ent (Fig. 26.2c);

Hypothesis test for the Pearson correlation coefficient
We want to know if there is any linear correlation between two
numerical variables. Our sample consists of n independent pairs of
values of x and y. We assume that at least one of the two variables is
Normally distributed.

Spearman’s rank correlation coefficient
We calculate Spearman’s rank correlation coefficient, the non-
parametric equivalent to Pearson’s correlation coefficient, if one or
more of the following points is true:
• at least one of the variables, x or y, is measured on an ordinal
scale;
• neither x nor y is Normally distributed;
• the sample size is small;
• we require a measure of the association between two variables
when their relationship is non-linear.

Calculation
To estimate the population value of Spearman’s rank correlation
coefficient, rs, by its sample value, rs:
1 Arrange the values of x in increasing order, starting with the
smallest value, and assign successive ranks (the numbers 1, 2, 3,
. . . , n) to them. Tied values receive the mean of the ranks these
values would have received had there been no ties.
2 Assign ranks to the values of y in a similar manner.
3 rs is the Pearson correlation coefficient between the ranks of x
and y.

Properties and hypothesis tests
These are the same as for Pearson’s correlation coefficient, replac-
ing r by rs, except that:
• rs provides a measure of association (not necessarily linear)
between x and y;
• when testing the null hypothesis that rs = 0, refer to Appendix A11
if the sample size is less than or equal to 10;
• we do not calculate rs

2 (it does not represent the proportion of the
total variation in one variable that can be attributed to its linear rela-
tionship with the other).

1 Define the null and alternative hypotheses under study
H0: r = 0
H1: r π 0

2 Collect relevant data from a sample of individuals

3 Calculate the value of the test statistic specific to H0
Calculate r.

• If n £ 150, r is the test statistic

• If n > 150, calculate 

which follows a t-distribution with n - 2 degrees of freedom.

4 Compare the value of the test statistic to values from a
known probability distribution

• If n £ 150, refer r to Appendix A10
• If n > 150, refer T to Appendix A2.

5 Interpret the P-value and results
Calculate a confidence interval for r. Provided both variables

are approximately Normally distributed, the approximate 95%
confidence interval for r is:

where 

and 

Note that, if the sample size is large, H0 may be rejected even if r
is quite close to zero. Alternatively, even if r is large, H0 may not
be rejected if the sample size is small. For this reason, it is par-
ticularly helpful to calculate r2, the proportion of the total vari-
ance of one variable explained by its linear relationship with the
other. For example, if r = 0.40 then P < 0.05 for a sample size of
25, but the relationship is only explaining 16% (= 0.402 ¥ 100) of
the variability of one variable.
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Figure 26.2 Diagrams showing when it is inappropriate to calculate the
correlation coefficient. (a) Relationship not linear, r = 0. (b) In the pres-
ence of outlier(s). (c) Data comprise subgroups.
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Example

As part of a study to investigate the factors associated with
changes in blood pressure in children, information was collected
on demographic and lifestyle factors, and clinical and anthropo-
metric measures in 4245 children aged from 5 to 7 years. The rela-
tionship between height (cm) and systolic blood pressure (mmHg)

in a sample of 100 of these children is shown in the scatter diagram
(Fig. 28.1); there is a tendency for taller children in the sample to
have higher blood pressures. Pearson’s correlation coefficient
between these two variables was investigated. Appendix C con-
tains a computer output from the analysis.

pressure explains only a small percentage, 11%, of the variation
in systolic blood pressure.

In order to determine the 95% confidence interval for the true
correlation coefficient, we calculate:

Thus the confidence interval ranges from

We are thus 95% certain that r lies between 0.14 and 0.49.
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1 H0: the population value of the Pearson correlation coeffi-
cient, r, is zero

H1: the population value of the Pearson correlation coefficient
is not zero.

2 We can show (Fig. 37.1) that the sample values of both 
height and systolic blood pressure are approximately Normally
distributed.

3 We calculate r as 0.33. This is the test statistic since n £ 150.

4 We refer r to Appendix A10 with a sample size of 100: 
P < 0.001.

5 There is strong evidence to reject the null hypothesis; we con-
clude that there is a linear relationship between systolic blood
pressure and height in the population of such children. However,
r2 = 0.33 ¥ 0.33 = 0.11. Therefore, despite the highly significant
result, the relationship between height and systolic blood 

As we might expect, given that each variable is Normally dis-
tributed, Spearman’s rank correlation coefficient between
these variables gave a comparable estimate of 0.32. To test H0: 

rs = 0, we refer this value to Appendix A10 and again find 
P < 0.001.

Data kindly provided by Ms O. Papacosta and Dr P. Whincup, Department of Primary Care and Population Sciences, Royal Free and University College Medical
School, London, UK.

PMA26  4/23/05  6:01 PM  Page 69


