Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2013; Volume 207, Supplement 694
92nd Annual Meeting of the German Physiological Society
3/2/2013-3/5/2013
Heidelberg, Germany


A BONE OVERGROWTH DISORDER DUE TO A GAIN-OF-FUNCTION MUTATION OF GUANYLYL CYCLASE B, THE RECEPTOR FOR C-TYPE NATRIURETIC PEPTIDE
Abstract number: P179

Premsler 1   *T. , Hannema 2  S.E., van Duyvenvoorde H.A., Gaßner 1  B., Oberwinkler 1  H., Yang 4  R.-B., Müller 5  T., Santen 3  G.W.E., Verkerk 6  A.J.M., Uitterlinden 6  A., Oostdijk 2  W., Pereira 7  A.M., Losekoot 3  M., Wit 2  J.-M., Kuhn 1  M., Kant 3  S.G.

1 University of Würzburg, Physiological Institute I, Cardiovascular Physiology, Würzburg, Germany
2 Leiden University Medical Center, Department of Pediatrics, Leiden, Netherlands
3 Leiden University Medical Center, Center for Human and Clinical Genetics, Leiden, Netherlands
4 Academia Sinica Taipei, Institute of Biomedical Sciences, Taipei, Taiwan
5 University of Würzburg, Department of Molecular Plant Physiology and Biophysics, Würzburg, Germany
6 Erasmus Medical Center, Department of Internal Medicine, Rotterdam, Netherlands
7 Leiden University Medical Center, Department of Endocrinology and Metabolism, Leiden, Netherlands

Question:

C-type natriuretic peptide (CNP), via its guanylyl cyclase B (GC-B) receptor and intracellular cGMP, is critically involved in bone development by regulating growth plate chondrocyte differentiation and proliferation. Homozygous loss-of-function mutations in GC-B lead to short-limbed dwarfism (acromesomelic dysplasia, type Maroteaux). Here we describe a novel heterozygous gain-of-function mutation in an extremely tall patient displaying mild scoliosis and a non-Marfanoid habitus.

Methods:

Whole exome sequencing revealed a heterozygous GC-B mutation resulting in a single amino acid exchange within the submembrane kinase homology domain (KHD). The impact on cGMP formation was studied in transfected HEK293 cells and in cultured fibroblasts obtained from the patient and healthy donors. The interaction of wildtype and mutated GC-B was evaluated by co-immunoprecipitation.

Results:

Basal and CNP-stimulated cGMP syntheses by homozygous and heterozygous mutant GC-B dimers were markedly increased in HEK293 cells and in patient skin fibroblasts. Homology modeling revealed that the mutation is adjacent to the ATP-binding pocket of the KHD domain. Notably, ATP potentiated CNP effects on wildtype and much more on mutated GC-B. Finally, co-IP demonstrated that wildtype und mutant GC-B form heterodimers, explaining the functional impact of this point mutation on receptor activity under (human) heterozygous conditions.

Conclusions:

Our study unravels for the first time a point mutation in the KHD of GC-B which dramatically enhances cGMP production by the adjacent GC domain. This remarks the regulatory role of the KHD and suggests that configuration of the ATP-binding pocket provides a critical allosteric regulatory step in CNP/GC-B signal transduction. Supported by SFB 688.

To cite this abstract, please use the following information:
Acta Physiologica 2013; Volume 207, Supplement 694 :P179

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE