Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2010; Volume 199, Supplement 678
Belgian Society for Fundamental and Clinical Physiology and Pharmacology, Spring Meeting 2010
3/27/2010-3/27/2010
Facultés Universitaires de la Paix, Namur, Belgium


COMBINED EXPERIMENTAL AND COMPUTATIONAL APPROACHES TO STUDY THE ACTION OF BLOCKERS OF SMALL CONDUCTANCE CALCIUM-ACTIVATED POTASSIUM (SK) CHANNELS
Abstract number: O-10

Dilly1,2 S., Lamy1 C., Liegeois2 J.-F., Seutin1 V.

Small conductance calcium-activated potassium channels (SK) are widely expressed throughout the central nervous system (CNS) and underlie medium duration afterhyperpolarizations in many types of neurons. Three subtypes of SK channels, SK1, SK2 and SK3, have been identified so far in different parts of the brain. Blocking SK channels might be beneficial in the treatment of several CNS disorders such as depression, Parkinson's disease and cognitive disorders. Until now, the precise site of interaction between these channels and their blockers has not yet been elucidated. In this context, molecular modeling is a theoretical approach that can quickly provide ideas on the binding mode of SK blockers. We first performed homology modeling of the S5-H5-S6 portion of the channels on the basis of the crystal structure of the KcsA potassium channel (Zhou et al. Nature. 2001, 414, 43-48). The binding sites of N-methyl-laudanosine (NML) (Scuvée-Moreau et al. J. Pharmacol. Exp. Ther. 2002, 302, 1176–83), a non-selective and non-peptidic ligand, and apamin (Blatz et al. Nature. 1986, 323, 718–20), an octadecapeptide with a preference for the SK2 subtype, were subsequently explored by docking analysis. Different amino-acids were suggested to interact with the two blockers. The docking of NML revealed a binding site in the turret region, far from the pore. The docking of apamin identified a very large binding site that includes a portion of the site of NML. In order to confirm the predicted binding sites, site-directed mutagenesis was used. The first mutant channels tested in electrophysiological experiments by the patch clamp technique validated some of the theoretical data. Using this strategy, we hope to get a better understanding of the mechanism of action of SK blockers and eventually find strategies to obtain subtype-selective blockers

To cite this abstract, please use the following information:
Acta Physiologica 2010; Volume 199, Supplement 678 :O-10

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE