Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2010; Volume 198, Supplement 677
Joint Meeting of the Scandinavian and German Physiological Societies
3/27/2010-3/30/2010
Copenhagen, Denmark


THE PERMEABILITY OF THE LARGE CONDUCTANCE ANION CHANNEL OF THE RUMINAL EPITHELIUM DECREASES WITH INCREASING CHAIN LENGTH OF SCFA
Abstract number: P-MON-90

Stumpff1 F, Georgi1 MI, Martens1 H

Objective: The energy requirements of cows and sheep are met by ruminal fermentation of cellulose into short chain fatty acids (SCFA), which are extensively absorbed by forestomach epithelia. While fractional disappearance rates from the rumen support a permeability sequence of butyrate > propionate > acetate, efflux rates into the blood suggest an inverse order. Basolateral efflux has recently been proposed to occur via a large conductance anion channel. The object of the current study was to characterize this channel in more detail. Methods: Isolated cells of the ruminal epithelium were studied with the patch clamp technique. Results: The permeability of the whole cell membrane for halides showed a loose correlation to the hydration energies, with the permeability for fluoride clearly lower than that for the other halides (P(F)/P(Cl)=0.45 ± 0.04, n = 10; P(Br)/P(Cl)=1.01 ± 0.08, n = 10; P(I)/P(Cl)=1.05 ± 0.08, n = 10). The permeability of the channel for the organic anions tested decreased with molecular size (P(acetate)/P(Cl): 0.42 ± 0.01, n = 16; P(propionate)/P(Cl): 0.39 ± 0.01, n = 47; P(butyrate)/P(Cl): 0.36 ± 0.02, n = 32; P(gluconate)/P(Cl): 0.26 ± 0.01; n = 39), possibly reflecting a decrease in binding energy due to greater partial charge distribution or other steric effects. Single channel measurements confirm the whole cell permeability sequence, with the conductance for propionate (114 ± 10 pS) lower than that previously measured for chloride (350 ± 7 pS) or acetate (142 ± 7 pS). Conclusions: Ruminal epithelial cells express a large conductance anion channel with a moderately weak field strength selectivity site for monoatomic anions. The permeabilities of the polyatomic anions of SCFA decrease in the order acetate- > propionate- > butyrate-, reflecting the rate of uptake into portal blood. The low passage rate of butyrate- through the channel may explain why this SCFA is so extensively retained and metabolized within the ruminal epithelium.

To cite this abstract, please use the following information:
Acta Physiologica 2010; Volume 198, Supplement 677 :P-MON-90

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE