Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2009; Volume 197, Supplement 675
Joint meeting of The Slovenian Physiological Society, The Austrian Physiological Society and The Federation of European Physiological Societies
11/12/2009-11/15/2009
Ljubljana, Slovenia


INVOLVEMENT OF ATP DEPENDENT K CHANNELS TO PROLIFERATIVE EFFECT OF ERYTHROPOIETIN
Abstract number: P173

Yazihan1,2 Nuray, Akcil1 Ethem, Ermis2 Ezgi, Kocak3 Mehtap

1Ankara University, Faculty of Medicine, Pathophysiology Department
2Molecular Biology Unit,
3Yeditepe University, Faculty of Medicine, Pathophysiology Department

Aim and scope: 

The haematopoietic factor erythropoietin (EPO) has recently been recognized to play a physiological role in cellular survival. In vitro studies have shown that EPO has direct effects on proliferation and cell death in proximal tubular epithelial cells. Recently, it has been reported that mitochondrial K-ATP channel openers have an effect on myocardial protection via a pharmacological preconditioning action with EPO. The studies related to role of K-ATP channels in renal ischemia pathophysiology and they have conflicting results. In this study we aimed to evaluate effect of K-ATP channels blocker glybenclamide and opener diazoxide in hypoxia and EPO treatment.

Methods and material: 

In this study; human renal proximal tubular cell line CRL-2830 incubated with EPO (20 iu/ml), glybenclamide (100 mM) and diazoxide (100 mM) at the 2-24-48th hours. Apoptotic activity, (caspase-3 levels), cellular proliferation (MTT) and expression of Kir6X channels was evaluated with western blot.

Results: 

EPO induced prominent proliferation in renal tubuler cells. Erythropoietin attenuates hypoxia-induced apoptosis of tubular cells in a dose-time dependent manner. Diazoxide has similar effect with EPO. Glybenclamide decrased cellular proliferation, induced caspase-3 activity, apoptosis and cell death. Glybenclamide blocked protective role of EPO. EPO treatment increased Kir 6.1 and 6.2 expression while glybenclamide decreased.

Conclusions: 

EPO and diazoxide treatment are found protective against hypoxia induced cytotoxicity. K-ATP channels are important for regulation of metabolic and acid-base balance of the cells, especially for renal tubular functions. Glybenclamide is currently used as an antidiabetic and renal pathologies are very common in progress of diabetes. Our results might be informative for regulation of treatment protocols of diabetic patients.

This study is supported by TUBITAK (SBAG-108S248).

To cite this abstract, please use the following information:
Acta Physiologica 2009; Volume 197, Supplement 675 :P173

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE