Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2009; Volume 197, Supplement 675
Joint meeting of The Slovenian Physiological Society, The Austrian Physiological Society and The Federation of European Physiological Societies
11/12/2009-11/15/2009
Ljubljana, Slovenia


SPATIAL CA2+ SIGNALING IN CARDIAC MYOCYTES
Abstract number: L134

Kockskamper1 Jens

1Division of Cardiology, Medical University of Graz, Graz, Austria

Local increases in Ca2+ concentration ([Ca2+]) in the cytoplasm and nucleus of cardiac myocytes are key to excitation-contraction and excitation-transcription coupling, respectively. Ca2+ increases in these compartments are brought about by Ca2+ release from internal stores, i.e. the sarcoplasmic reticulum (SR) and the nuclear envelope (NE). Dysregulation of Ca2+ release from these stores may elicit arrhythmias and cellular remodeling.

In atrial myocytes – due to a lack of T-tubules – SR Ca2+ release during excitation-contraction coupling is spatially and temporally inhomogenous. Depolarization first triggers Ca2+ release from the subsarcolemmal SR, from where it spreads centripetally via active Ca2+-induced Ca2+ release from the central SR to induce contraction. SR Ca2+ release during excitation-contraction coupling occurs mainly via functional units of ryanodine receptors (RyRs), which are distributed in a sarcomeric, grid-like pattern distanced ~2mm apart. SR Ca2+ release is regulated by the microenvironment of RyRs. Local disturbances of RyR-mediated Ca2+ release (e.g. by inhibition of glycolysis) may result in spatially confined, subcellular Ca2+ alternans and generation of arrhythmogenic [Ca2+] waves. In addition to RyRs, atrial myocytes also contain IP3 receptors (IP3Rs), albeit at much lower density. Activation of subsarcolemmal IP3Rs, however, through IP3 generated from ET receptors coupling to phospholipase C, induces spontaneous diastolic Ca2+ release and arrhythmic extra-contractions.

The nucleus is separated from the cytoplasm by the NE. Due to the presence of nuclear pores, however, cytoplasmic Ca2+ may also diffuse into the nucleoplasm. Thus, during excitation-contraction coupling [Ca2+] also increases passively in the nucleus, but with a considerable delay as compared to the cytoplasmic [Ca2+] transient. The NE is a functional Ca2+ store directly connected to the SR. It forms tubular structures traversing the nucleoplasm, i.e. the nucleoplasmic reticulum, and contains RyRs and IP3Rs as Ca2+ release channels. Thus, the NE has the potential to regulate actively local Ca2+ in the nucleoplasm and, thereby, to modulate transcription (excitation-transcription coupling). Activation of nuclear IP3Rs causes a selective increase in the nuclear [Ca2+] transient, thus demonstrating directly that nuclear Ca2+ may be regulated independently from cytoplasmic Ca2+.

In conclusion, spatial Ca2+ signaling in cardiac myocytes depends on the subcellular distribution, local regulation and activation of RyRs and IP3Rs. It is essential for physiological processes such as excitation-contraction and excitation-transcription coupling but may also be involved in pathological processes such as arrhythmogenesis and the development of hypertrophy.

To cite this abstract, please use the following information:
Acta Physiologica 2009; Volume 197, Supplement 675 :L134

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE