Meeting details menu

Meeting Authors
Meeting Abstracts
Keynote lectures
Oral communications
Poster presentations
Special symposia
Other

Acta Physiologica Congress

Back

Acta Physiologica 2009; Volume 197, Supplement 675
Joint meeting of The Slovenian Physiological Society, The Austrian Physiological Society and The Federation of European Physiological Societies
11/12/2009-11/15/2009
Ljubljana, Slovenia


NEURONAL FUNCTIONAL DIFFERENTIATION IN MAMMALIAN POSTNATAL STEM/PRECURSOR CELLS
Abstract number: L16

Montalbano1 Alberto, Decimo2 Ilaria, Bifari3 Francesco, Bersan2 Emanuela, Chiamulera2 Christian, Pizzolo3 Giovanni, Krampera3 Mauro, Fumagalli2 Guido, Lorenzon1 Paola, Sciancalepore1 Marina

Department of Life Science and B.R.A.I.N., University of Trieste, Italy
Department of Medicine and Public Health, Section of Pharmacology, University of Verona, Italy
Department of Clinical and Experimental Medicine, Stem Cell Research Laboratory, Section of Hematology, University of Verona, Italy

Neural stem cells have been found in neurogenic brain regions like the hippocampus, subventricular zone (SVZ), olfactory bulb and in some non-neurogenic regions, i.e. spinal cord. Novel stem cell niches, hosting stem/progenitor cells with neural differentiation potential have also been identified in rat leptomeninges. Immunocytochemical data have revealed nestin-positive cells that did not follow the astrocyte (glial fibrillary acidic proteins, GFAP-), or vascular (integral membrane chondroitin sulphate proteoglycan, NG2-) profiles. Such cells are present from embryonic stages up to adulthood. Tissue extracts with nestin-positive cells can be cultured and expanded in vitro, both as neurospheres and cell populations with stem cell features. Neurospheres are similar to the SVZ-derived neurospheres in terms of multipotency and gene expression. Cultured cells also have the capacity to form synaptic connections. Preliminary electrophysiological profiles of expanded cells were examined at 15 days in vitro. Whole-cell patch-clamp recordings, revealed mostly incomplete functional development, with an early neuron-like appearance. Small rudimentary action potentials were generated by the majority of cells in response to incremental injected depolarizing current steps, starting from a holding potential of -60 mV. Fast overshooting action potentials with a mature configuration characterize mature neurons. Current-voltage relationships revealed various electrophysiological properties, but mainly outward membrane rectification.

Based on the presence or absence of rectification when depolarizing step currents were applied, two basic cell types were observed: the majority of cells were classified as Type I, primarily associated with outward rectification; Type II cells had linear responses to step currents. MAP2-positive cells expressed GluR2 subunits of the ionotropic AMPA-glutamate receptor as well as the glutamate decarboxylase (GAD67), marker of GABAergic neurons. Exogenously-applied glutamate or GABA at 100 mM elicited postsynaptic responses. These data suggest that rat leptomeningeal stem cells can differentiate into fully functional neurons.

To cite this abstract, please use the following information:
Acta Physiologica 2009; Volume 197, Supplement 675 :L16

Our site uses cookies to improve your experience.You can find out more about our use of cookies in our standard cookie policy, including instructions on how to reject and delete cookies if you wish to do so.

By continuing to browse this site you agree to us using cookies as described in our standard cookie policy .

CLOSE