% Exercise 9_1, Basin Analysis % It is possible to reconstruct the decompacted layers, the changes of the initial parametrs % representing the thicknesses derived by boreholes data permit to evaluate the decompacted % layers in every natuaral example %Sonia Scarselli, ETH-Zentrum, sonia.scarselli@erdw.ethz.ch %-------------------------------------------------------------------------- clear % initial parameters ( actual thicknesses from boreholes) z_PreC= 1.052; % actual thickness of the PreCreatceous shaley sandstones , in Km z_LowC= 0.459; % actual thickness of the Lower Cretaceous shales , in Km z_UpC = 0.968; % actual thickness of the Upper Cretaceous chalk, in Km z_Pal = 0.605; % actual thickness of the Palaeocene sandstones , in Km z_EoPle= 1.944; % actual thickness of the Eocene Pleistocene shales , in Km % Surface porosity for each formation fi_PreC0 = 0.56; % surface porosity of the shaley sandstones facies; fi_LowC0 = 0.63;% surface porosity of the shales facies; fi_UpC0 =0.70;% surface porosity of the chalk facies; fi_Pal0 = 0.49;% surface porosity of the sandstones facies; fi_EoPl0 =0.63; % surface porosity of the shales facies; % fu-depth coefficent for each formation c1= 0.39; % fi-depth coefficent in km-1 for shaley sandstones; c2= 0.51;% fi-depth coefficent in km-1 for shales; c3 = 0.71;% fi-depth coefficent in km-1 for chalk; c4 = 0.27;% fi-depth coefficent in km-1 for sandstones; c5 =c2; y6 = 0;% actual top of the layer5, surface y5 = 1.944; % actual top of the layer4 and bottom of the layer 5, in Km y4 = 2.549; % actual top of the layer3 and bottom of the layer 4, in Km y3 = 3.517; % actual top of the layer2 and bottom of the layer3, in Km y2 = 3.976 ; % actual top of the layer1 and bottom of the layer 2, in Km y1 = 5.028; % actual bottom of the layer y = 0; % surface conditions % density at the actual condition rho_w = 1030; % density of the sea water; rho_UpC = 2710 ; % density for the layer 4, in kg/m3; rho_Pal= 2650 ; % density for the 5th layer; rho_EoPl= 2720; % density of the sixth layers; rho_m = 3300; % density of the mantle % CALCULATION OF THE DECOMPACTION FOR EACH FORMATION % decompaction of the LAYER 1, 210-140MA (T1); x1_1 is the thickness of the layer 1 at time T1 eps = 0.0001 ; error = 2*eps ; x1_1 =1; while error > eps xPreC1= z_PreC-fi_PreC0/c1*(exp(-c1*y2)-exp(-c1*y1))+ fi_PreC0/c1*(exp(-c1*y)-exp(-c1* x1_1)); error = abs(xPreC1-x1_1 )/ x1_1 x1_1 = xPreC1 end % decompaction of the LAYER2, 140-100 MA (T2); x2_2 is the thickness of the layer 2 at time T2 eps = 0.0001 ; error = 2*eps ; x2_2=1; while error > eps xLowC2= z_LowC-fi_LowC0/c2*(exp(-c2*y3)-exp(-c2*y2))+ fi_LowC0/c2*(exp(-c2*y)-exp(-c2*x2_2)); error = abs(xLowC2-x2_2)/x2_2 x2_2 = xLowC2 end % decompaction of the LAYER 1, 140-100MA (T2), x1_2is the thickness of the layer 1 at time T2 eps = 0.0001 ; error = 2*eps ; x1_2 =1; while error > eps xPreC2= (z_PreC-fi_PreC0/c1*(exp(-c1*y2)-exp(-c1*y1))+ fi_PreC0/c1*(exp(-c1*xLowC2)-exp(-c1*x1_2))) + xLowC2; error = abs(xPreC2-x1_2)/x1_2 x1_2 = xPreC2 end % decompaction of the LAYER3, 100-65 MA (T3), x3_3 is the thickness of the layer 3 at time T3 eps = 0.0001 ; error = 2*eps ; x3_3 =1; while error > eps xUpC3= (z_UpC-fi_UpC0/c3*(exp(-c3*y4)-exp(-c3*y3))+ fi_UpC0/c3*(exp(-c3*y)-exp(-c3*x3_3))) error = abs(xUpC3-x3_3)/x3_3 x3_3 = xUpC3 end % decompaction of the LAYER2 (Lower Cretaceous, 100-65MA (T3), x2_3 is the thickness of the layer 2 at time T3 eps = 0.0001 ; error = 2*eps ; x2_3= 1; while error > eps xLowC3= z_LowC-fi_LowC0/c2*(exp(-c2*y3)-exp(-c2*y2))+ fi_LowC0/c2*(exp(-c2*xUpC3)-exp(-c2*x2_3)) + xUpC3 ; error = abs(xLowC3-x2_3)/x2_3 x2_3= xLowC3 end % decompaction of the LAYER 1, 100-65MA (T3), x1_3 is the thickness of the layer 1 at time T3 eps = 0.0001 ; error = 2*eps ; x1_3 =1; while error > eps xPreC3= (z_PreC-fi_PreC0/c1*(exp(-c1*y2)-exp(-c1*y1))+ fi_PreC0/c1*(exp(-c1*xLowC3)-exp(-c1*x1_3))) + xLowC3; error = abs(xPreC3-x1_3)/x1_3 x1_3 = xPreC3 end % decompaction of the layer 4, 65-55 MA(T4), x4_4 is the thickness of the layer 4 at time T4 eps = 0.0001 ; error = 2*eps ; x4_4 =1; while error > eps xPal4 = z_Pal-fi_Pal0/c4*(exp(-c4*y5)-exp(-c4*y4))+ fi_Pal0/c4*(exp(-c4*y)-exp(-c4*x4_4)); error = abs( xPal4 -x4_4 )/x4_4 x4_4 = xPal4 end % decompaction of the LAYER3, 65-55 MA (T3), x3_4 is the thickness of the layer 3 at time T4 eps = 0.0001 ; error = 2*eps ; x3_4 =1; while error > eps xUpC4= (z_UpC-fi_UpC0/c3*(exp(-c3*y4)-exp(-c3*y3))+ fi_UpC0/c3*(exp(-c3*xPal4 )-exp(-c3*x3_4))) + xPal4 ; error = abs(xUpC4-x3_4)/x3_4 x3_4 = xUpC4 end % decompaction of the LAYER2 (Lower Cretaceous, 65-55MA (T4), x2_4 is the thickness of the layer 2 at time T4 eps = 0.0001 ; error = 2*eps ; x2_4= 1; while error > eps xLowC4= z_LowC-fi_LowC0/c2*(exp(-c2*y3)-exp(-c2*y2))+ fi_LowC0/c2*(exp(-c2*xUpC4)-exp(-c2*x2_4)) + xUpC4 ; error = abs(xLowC4-x2_4)/x2_4 x2_4= xLowC4 end % decompaction of the LAYER 1, 65-55MA (T4), x1_4 is the thickness of the layer 1 at time T4 eps = 0.0001 ; error = 2*eps ; x1_4 =1; while error > eps xPreC4= (z_PreC-fi_PreC0/c1*(exp(-c1*y2)-exp(-c1*y1))+ fi_PreC0/c1*(exp(-c1*xLowC4)-exp(-c1*x1_4))) + xLowC4; error = abs(xPreC4-x1_4)/x1_4 x1_4 = xPreC4 end % decompaction of the layer 5 , 55-0 Ma (T5), x5_5 is the thickness of the layer 5 at time T5 eps = 0.0001 ; error = 2*eps ; x5_5 =1; while error > eps xEoPl5= z_EoPle- fi_EoPl0/c5*(exp(-c5*y6)-exp(-c5*y5))+ fi_EoPl0/c5*(exp(-c5*y)-exp(-c5*x5_5)) ; error = abs(xEoPl5-x5_5)/x5_5 x5_5 = xEoPl5 end % decompaction of the layer 4, 55-0MA(T4), x4_4 is the thickness of the layer 4 at time T5 eps = 0.0001 ; error = 2*eps ; x4_5=1; while error > eps xPal5 = ( z_Pal-fi_Pal0/c4*(exp(-c4*y5)-exp(-c4*y4))+ fi_Pal0/c4*(exp(-c4*xEoPl5)-exp(-c4*x4_5))) + xEoPl5; error = abs( xPal5 -x4_5 )/x4_5 x4_5 = xPal5 end % decompaction of the LAYER3,55-0 MA (T5), x3_5 is the thickness of the layer 3 at time T5 eps = 0.0001 ; error = 2*eps ; x3_5 =1; while error > eps xUpC5= (z_UpC-fi_UpC0/c3*(exp(-c3*y4)-exp(-c3*y3))+ fi_UpC0/c3*(exp(-c3*xPal5 )-exp(-c3*x3_5))) + xPal5 ; error = abs(xUpC5-x3_5)/x3_5 x3_5 = xUpC5 end % decompaction of the LAYER2 (Lower Cretaceous, 55-0MA (T5), x2_5 is the thickness of the layer 2 at time T5 eps = 0.0001 ; error = 2*eps ; x2_5= 1; while error > eps xLowC5= z_LowC-fi_LowC0/c2*(exp(-c2*y3)-exp(-c2*y2))+ fi_LowC0/c2*(exp(-c2*xUpC5)-exp(-c2*x2_5)) + xUpC5 ; error = abs(xLowC5-x2_5)/x2_5 x2_5= xLowC5 end % decompaction of the LAYER 1, 55-0MA (T5), x1_5 is the thickness of the layer 1 at time T5 eps = 0.0001 ; error = 2*eps ; x1_5 =1; while error > eps xPreC5= (z_PreC-fi_PreC0/c1*(exp(-c1*y2)-exp(-c1*y1))+ fi_PreC0/c1*(exp(-c1*xLowC5)-exp(-c1*x1_5))) + xLowC5; error = abs(xPreC5-x1_5)/x1_5 x1_5= xPreC5 end %-------------------------------------------------------------------------- % CALCULATION OF BACKSTRIPPED POROSITY FOR EACH FORMATION fi_UpC3 = fi_UpC0/c3 *(((exp(-c3*y)) - exp(-c3*x3_3))/(x3_3-y)) % porosity of the Layer 3 at T3, fi_Pal4 = fi_Pal0/c4 *(((exp(-c4*y)) - exp(-c4*x4_4))/(x4_4-y)) % porosity of the Layer 4 at T4, fi_UpC4 = fi_UpC0/c3 *(((exp(-c3*x4_4)) - exp(-c3*x3_4))/(x3_4-x4_4)) % porosity of the Layer 3 at T4, fi_EoPl5 = fi_EoPl0/c5 *(((exp(-c5*y)) - exp(-c5*x5_5))/(x5_5-y)) % porosity of the Layer 5 at T5, fi_Pal5= fi_Pal0/c4 *(((exp(-c4*x5_5)) - exp(-c4*x4_5))/(x4_5-x5_5)) % porosity of the Layer 4 at T5, fi_UpC5= fi_UpC0/c3 *(((exp(-c3*x4_5)) - exp(-c3*x3_5))/(x3_5-x4_5)) % porosity of the Layer 3 at T3, %-------------------------------------------------------------------------- % INCREMENT OF THE DENSITY REFFERED TO THE FORMATIONS DURING THE TIME % increment of the bulk density from 100Ma to 0 Ma rho_t4= ((fi_UpC3*rho_w + (1-fi_UpC3)*rho_UpC)/x3_3)* x3_3% increment due to the fourth layer; % increment due to the fifth layer at time 5, 55MA rho_t5 = (fi_UpC4*rho_w + (1-fi_UpC4)*rho_UpC)*((x3_4 - x4_4)/x3_4) + (fi_Pal4*rho_w + (1-fi_Pal4)*rho_Pal)*(x4_4/x3_4) % increment due to the sixth layer at time 6, 0MA rho_t6 = (fi_UpC5*rho_w + (1-fi_UpC5)*rho_UpC )*((x3_5 - x4_5) /x3_5) + (fi_Pal5*rho_w + (1-fi_Pal5)*rho_Pal)*((x4_5 - x5_5)/x3_5) + (fi_EoPl5*rho_w + (1-fi_EoPl5)*rho_EoPl)*(x5_5/x3_5) %BACKSTRIPPED TECTONIC SUBSIDENCE USING AIRY MODEL Y0 = 0 ; % the subsidence started in the time 100 MA, so the thickness at that time is zero Y1 = x3_3 * ((rho_m - rho_t4)/(rho_m-rho_w)) Y2 =x3_4 * ((rho_m - rho_t5)/(rho_m-rho_w)) Y3 = x3_5 * ((rho_m - rho_t6)/(rho_m-rho_w)) % plot of the data subplot(1,2,1) tPreCR = [210;140; 100; 65; 55; 0]; % plot of the decompacted sequences YPreCR = [ Y0; x1_1; x1_2; x1_3; x1_4; x1_5]; plot(tPreCR ,YPreCR,'bo-') hold on; tLowCR = [140; 100; 65; 55; 0]; YLowCR = [Y0; x2_2; x2_3; x2_4; x2_5]; plot(tLowCR,YLowCR,'bo-') hold on; tUpCR= [ 100; 65; 55; 0]; YUpCR = [ Y0; x3_3; x3_4; x3_5]; plot(tUpCR ,YUpCR,'bo-') hold on; tPa = [ 65; 55; 0]; YPa = [Y0;x4_4; x4_5]; plot(tPa ,YPa,'bo-') hold on; tEoPl = [ 55; 0]; YEoPl = [ Y0;x5_5 ]; plot(tEoPl ,YEoPl,'bo-') hold on; title('Decompacted Depth versus Time'); xlabel('Time,My'); ylabel ('Depth, Km'); set(gca,'XGrid','on','YGrid','on'); set(gca,'XDir','reverse','YDir','reverse'); hold off; tTOT = [ 100; 65; 55; 0]; % plot of the tectonic subsidence YTOT = [ Y0; Y1; Y2; Y3]; subplot(1,2,2) plot ( tTOT, YTOT,'ro-') hold on; title('Tectonic Subsidence versus Time'); xlabel('Time,My'); ylabel ('Depth, Km'); set(gca,'XGrid','on','YGrid','on'); set(gca,'XDir','reverse','YDir','reverse'); hold off