%Exercise 3_3, Basin analysis %Calculation of Palaeotemperatures in a Basin undergoing Thermal Subsidence. %This program calculates the temperature of a chosen horizon as a function of time since the end of rifting. % In this exercise the depth of the horizon and the time since since the end of rifting are obtained from... ...a decompaction and backstripping analysis of a borehole or surface stratigraphic section. % Sonia Scarselli, ETH-Zurich, sonia.scarselli@erdw.ethz.ch clear; % Define some initial parameters y_c = 35000; % Initial crustal thickness in m [m] y_l = 125000; % Initial lithospheric thickness in m [m] rho_m0 = 3330; % Density of the mantle at 0 degrees celsius [kg/m^3] rho_c0 = 2800; % Density of the crust at 0 degrees celsius [kg/m^3] rho_s = 1000; % Density of the infilling material [kg/m^3] alpha_v = 3.28e-5; % Thermal expansion coefficient [1/K] Tm = 1333; % Temperature of the mantle [C] kappa = 1e-6; % Thermal diffusivity [m^2/s] Ks = 1.25; % Thermal conductivity of sediments [W/m/K] Kb = 3.0; % Thermal conductivity of basement [W/m/K] time_my = [0, 35, 45, 100]; % Time since end of rifting [my] time_s = time_my*365*24*3600*1e6; % Time since end of rifing in seconds depth = [0.851, 2.098, 2.524, 3.976]; % Depth of in km depth = depth*1000; % Subsidence in m beta1 =1.5 ; % Beta factor beta2 = 2; beta3 =4; tau = y_l^2/(pi^2*kappa); for i=1:length(depth) y = depth(i); t = time_s(i); q1(i) = Kb*Tm/y_l*(1+2*beta1/pi*sin(pi/beta1)*exp(-t/tau)) T1(i) = Kb/Ks*Tm*y/y_l*(1+2*beta1/pi*sin(pi/beta1)*exp(-t/tau)) q2(i) = Kb*Tm/y_l*(1+2*beta2/pi*sin(pi/beta2)*exp(-t/tau)) T2(i) = Kb/Ks*Tm*y/y_l*(1+2*beta2/pi*sin(pi/beta2)*exp(-t/tau)) q3(i) = Kb*Tm/y_l*(1+2*beta3/pi*sin(pi/beta3)*exp(-t/tau)) T3(i) = Kb/Ks*Tm*y/y_l*(1+2*beta3/pi*sin(pi/beta3)*exp(-t/tau)) end plot(time_my,T1,'b+-'); hold on plot(time_my,T2,'y+-'); hold on plot(time_my,T3,'g+-'); hold off xlabel('Time since end of rifting [Ma]'); ylabel('Temperature at the base of the lower Cretaceaous [C]'); grid on