% Exercise 3_1, Basin analysis % McKenzie model % Sonia Scarselli ETH-Zurich, sonia.scarselli@erdw.ethz.ch %This program calculates the syn-rift subsidence, the thermal (postrift) subsidence and the total subsidence, ... ...and plots the total subsidence as a function of time. % The initial parameters can be changed to evaluate different synrift subsidence and thermal subsidence % curve clear; % Define initial parameters y_c = 35000; % Initial crustal thickness in m [m] y_l = 125000; % Initial lithospheric thickness in m [m] rho_m0 = 3330; % Density of the mantle at 0 degrees celcius [kg/m^3] rho_c0 = 2800; % Density of the crust at 0 degrees celcius [kg/m^3] rho_s = 2066; % Density of sediments [kg/m^3] alpha_v = 3.28e-5; % volumetric coefficient of thermal expansion [1/K] Tm = 1333; % Temperature of the mantle [C] kappa = 1e-6; % Thermal diffusivity [m^2/s] time_my = 0:150; % Time [my] time_s = time_my*365*24*3600*1e6; % Time in seconds beta = 3 ; % stretch factor % Step 1: Calculate synrift subsidence ys = y_l*((rho_m0-rho_c0)*y_c/y_l*(1-alpha_v*Tm*y_c/y_l)-alpha_v*Tm*rho_m0/2)*(1-1/beta)/(rho_m0*(1-alpha_v*Tm)-rho_s) % Step 2: Calculate thermal subsidence with time E0 = 4*y_l*rho_m0*alpha_v*Tm/(pi^2*(rho_m0-rho_s)); tau = y_l^2/(pi^2*kappa); S = E0*beta/pi*sin(pi/beta)*(1-exp(-time_s/tau)); % Calculate total subsidence S_total = ys + S; %Total subsidence in meters S_thermal = S; %Thermal subsidence in meters S_total = S_total /1e3; %Total subsidence in km's S_thermal = S_thermal/1e3; %Thermal subsidence in km's % Plotting plot(time_my,S_total,'r-') title('Synrift and thermal subsidence, part a') xlabel('Time since end of rifting [My]') ylabel('Thermal subsidence [km]'); legend(num2str(beta)) grid on axis ij